Measuring Charge and Statistics of FQH Quasiparticles through Edge State Transport

Kun Yang

Physics Department, Florida State University and National High Magnetic Field Laboratory; Zhejiang Institute of Modern Physics, Zhejiang University

Review talk based mostly on other people’s work.
Measuring Fractional Charge

Early experiment by Goldman and Su (Science 95) using equilibrium, electrostatic measurements obtained evidence suggestive of e/3 charge quasiparticles at $v=1/3$; needed assumptions about electrostatic configurations/Coulomb blockade arguments about the system.

More direct measurement of fractional charge uses non-equilibrium shot noise generated by backscattering of quasiparticles at the edge of a fractional quantum Hall liquid [Saminadayar et al. (Saclay group) PRL 97; de-Picciotto et al (Weizmann group) Nature 97].
Shot (Poison) Noise in Current at Fixed Voltage

Due to discreteness in charge, actual current made of a sequence of delta-function spikes; this is shot-noise first found by Schottky in 1918.

Average Current: \[\langle I \rangle = e \langle N \rangle / t \]

Fluctuation in Current (Noise):
\[S = 2e^2 (\langle N^2 \rangle - \langle N \rangle^2) / t = 2e \langle I \rangle \]

There are other sources of noise; shot noise dominant in the low-T limit, in certain frequency ranges.
Basic Geometry for Noise Measurement at a Single Point Contact

Without quasiparticle back-scattering: \(I = G_h V \)
\((G_h = \nu e^2 / h) \);

With quasiparticle back-scattering:
\(I = G_h V - I_B \).

Measure shot noise in backscattering current, which is directly proportional to its charge \(e^* \).
(Kane and Fisher; Chamon, Freed and Wen; Fendley, Ludwig and Saleur, 94-96).
Situation not nearly as clear for hierarchy states.
Two-path interference for quasiparticles; setup similar to Aharonov-Bohm.

Can measure e^* if one can change flux without changing number of quasiparticles in the liquid; can measure statistical angle if one can change number of quasiparticles without changing flux. Neither is easy!
Difficulty can be seen from a simpler and more standard A-B interference setup:

More specifically, there are three topologically distinct ground states with 0, 1, and 2 quasiparticles in the hole; the flux induce transitions among them. Thus fractional charge and statistics conspire to give us “trivial” interference.

Q: What is the expected periodicity in Φ?
A: $\Phi^* = 2\pi/e^* = 3\Phi_0$, right?
Wrong!
$\Phi^* = \Phi_0$

The reason for $\Phi^* = \Phi_0$ is gauge invariance. At the end, the system is “made” of real electrons, hence adiabatically adding Φ_0 should bring the system back to its ground state (Byers and Yang, 1961).

More specifically, there are three topologically distinct ground states with 0, 1, and 2 quasiparticles in the hole; the flux induce transitions among them. Thus fractional charge and statistics conspire to give us “trivial” interference.
Something that looks like non-trivial interference pattern was seen recently:

Camino, Zhou, Goldman (2005)
Superperiod oscillation with $\Delta \Phi = 5\phi_0$.

Their conclusion (with a number of non-trivial assumptions): mutual statistics between $1/3$ and $1/5$ quasiparticles is $-1/15$. Interpretation unclear and controversial at this point.
The situation may simplify considerably for interference among non-Abelian quasiparticles!

Origin: braiding of non-Abelian quasiparticles can change the internal state in addition to giving an Abelian phase to the original state (Fradkin et al. 98; Stern and Halperin 06; Bonderson, Kitaev and Shtengel 06).

\[I_B \propto \left| (t_1 U_1 + t_2 U_2) \right|^2 \]

\[= |t_1|^2 + |t_2|^2 + 2 \text{Re} \left\{ t_1^* t_2 \langle \Psi | U_1^{-1} U_2 | \Psi \rangle \right\} \]

The interference term involves unitary transformation generated by a quasiparticle circling a loop; a phase in the Abelian case but a nontrivial transformation in the non-Abelian case.
Applying to Moore-Read State:

Odd number of quasiparticles in the loop:

\[\langle \Psi | U_1^{-1} U_2 | \Psi \rangle = 0; \text{ no interference at all!} \]

Physics: a new state orthogonal to the original one is generated after a quasiparticle circles around an odd number of other quasiparticles.

Even number of quasiparticles in the loop:

\[\langle \Psi | U_1^{-1} U_2 | \Psi \rangle \neq 0; \text{ there is interference pattern.} \]

Dramatic difference between even and odd number of quasiparticles in the loop is indication of non-Abelian statistics (Stern and Halperin 06; Bonderson, Kitaev and Shtengel 06); being looked for experimentally.
One step further: a Topological Qubit

Das Sarma, Freedman and Nayak PRL 05
Measuring statistics using noise correlation in T-shaped point contacts

\[S(t) \equiv \frac{\langle \Delta I_1(t) \Delta I_2(0) \rangle}{\langle I_1 \rangle \langle I_2 \rangle} \]

\[\tilde{S} \left(\frac{\omega}{\omega_0} \right) = A \left(\frac{\omega}{\omega_0}, \frac{T}{T_0}, K \right) + \cos \theta \ B \left(\frac{\omega}{\omega_0}, \frac{T}{T_0}, K \right) \]

Kim, Lawler, Vishveshwara and Fradkin PRL 05