1. 一个半径为 R 的电介质球，极化强度 $P = K \frac{r}{r^2}$，电容率为 ε。

(1) 计算束缚电荷的体密度和面密度；
(2) 计算自由电荷体密度；
(3) 计算球外和球内的电势；
(4) 求该带电介质球产生的静电场总能量。

解：(1)

$$\rho_p = -\nabla \cdot \bar{P} = -K \nabla \cdot \frac{\vec{r}}{r^2} = -K \left(\frac{1}{r^2} \cdot \vec{r} + \frac{1}{r^2} \nabla \cdot \vec{r} \right) = -K / r^2$$

$$\sigma_p = -\vec{n} \cdot \left(\bar{P}_2 - \bar{P}_1 \right)_{R}$$

又∵ 球外无极化电荷

$$\therefore \bar{P}_2 = 0 \quad \sigma_p = \vec{n} \cdot \bar{P}_1_{R} = \vec{n} \cdot \frac{\vec{r}}{r^2} |_{R} = K / R$$

(2) 由公式 $\vec{D} = \varepsilon \vec{E}$

$$\vec{D} = \varepsilon_0 \vec{E} + \bar{P}$$

$$\therefore \vec{D} = \frac{\varepsilon \vec{P}}{\varepsilon - \varepsilon_0}$$

$$\therefore \rho_f = \nabla \cdot \vec{D} = \frac{\varepsilon}{\varepsilon - \varepsilon_0} \nabla \cdot \vec{P} = \frac{\varepsilon K}{(\varepsilon - \varepsilon_0) r^2}.$$
2. 在均匀外电场中置入半径为 \(R_0 \) 的导体球，试用分离变数法求下列两种情况的电势

（1）导体球上接有电池，使球与地保持电势差 \(\phi_0 \)；

（2）导体球上带总电荷 \(Q \)。

解：（1）当导体球上接有电池，与地保持电势差 \(\phi_0 \) 时，以地为电势零点

本问题的定解条件如下

\[\phi_{1\phi} = \phi_0 \quad (R = R_0) \]

\[\nabla^2 \phi_{1\phi} = 0 \quad (R > R_0) \]

\[\begin{cases} \phi_{1\phi} \bigg|_{R \to \infty} = -E_0 R \cos \theta + \phi_0 \\ \phi_{1\phi} \bigg|_{R = R_0} = \phi_0 \end{cases} \]

前坐标原点的电势

根据有关的数理知识，可解得：

\[\phi_{1\phi} = \sum_{n=0}^{\infty} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) \cos \theta \]

由于 \(\phi_{1\phi} \bigg|_{R \to \infty} = -E_0 R \cos \theta + \phi_0 \) 即：

\[\phi_{1\phi} = a_0 + a_1 R \cos \theta + \sum_{n=2}^{\infty} a_n R^n \cos \theta + \frac{b_0}{R} + \frac{b_1}{R^2} \cos \theta + \sum_{n=2}^{\infty} \frac{b_n}{R^{n+1}} \cos \theta \bigg|_{R \to \infty} = -E_0 R \cos \theta + \phi_0 \]

故而有：

\[a_0 = \phi_0, a_1 = -E_0, a_n = 0(n > 1), b_n = 0(n > 1) \]

\[\therefore \phi_{1\phi} = \phi_0 - E_0 R \cos \theta + \frac{b_0}{R} + \frac{b_1}{R^2} \cos \theta \]
又 $\varphi_{\theta}|_{R=R_0} = \phi_0$, 即: $\varphi_{\theta}|_{R=R_0} = \varphi_0 - E_0R\cos\theta + \frac{b_0}{R_0} + \frac{b_1}{R_0^2}\cos\theta = \phi_0$

故而又有:

\[
\begin{align*}
\varphi_0 + \frac{b_0}{R_0} &= \phi_0 \\
-E_0R_0\cos\theta + \frac{b_1}{R_0^2}\cos\theta &= 0
\end{align*}
\]

得到: $b_0 = (\phi_0 - \phi_0)R_0$, $b_1 = E_0R_0^2$

最后，得定解问题的解为:

$$
\varphi_{\theta} = -E_0R\cos\theta + \varphi_0 + \frac{(\phi_0 - \phi_0)R_0}{R} + \frac{E_0R_0^3}{R}\cos\theta (R > R_0)
$$

(2) 当导体球上带总电荷 Q 时，定解问题存在的方式是:

\[
\begin{align*}
\nabla^2 \varphi_{\theta} &= 0 \ (R < R_0) \\
\nabla^2 \varphi_{\theta} &= 0 \ (R > R_0) \\
\varphi_{\theta}|_{R \to \infty} &= \text{有限} \\
\varphi_{\theta}|_{R=R_0} &= -E_0R\cos\theta + \varphi_0 \ (\varphi_0 \text{是未置入导体球前坐标原点的电势}) \\
\varphi_{\theta} &= \varphi_0 \\
\int_s \frac{\partial \varphi_{\theta}}{\partial R} \ ds &= Q(R = R_0)
\end{align*}
\]

解得满足边界条件的解是

$$
\varphi_{\theta} = \sum_{n=0} a_n R^n P_n(\cos\theta) \\
\varphi_{\theta} = \varphi_0 - E_0R\cos\theta + \sum_{n=0} \frac{b_n}{R^{n+2}} P_n(\cos\theta)
$$

由于 $\varphi_{\theta}|_{R \to \infty}$ 的表达式中，只出现了 $P_1(\cos\theta) = \cos\theta$ 项，故，$b_n = 0 (n > 1)$

$$
\therefore \varphi_{\theta} = \varphi_0 - E_0R\cos\theta + \frac{b_0}{R} + \frac{b_1}{R^2}\cos\theta
$$

又有 $\varphi_{\theta}|_{R=R_0}$ 是一个常数（导体球是静电平衡）

$$
\varphi_{\theta}|_{R=R_0} = \varphi_0 - E_0R_0\cos\theta + \frac{b_0}{R_0} + \frac{b_1}{R_0^2}\cos\theta = C
$$

$$
\therefore -E_0R_0\cos\theta + \frac{b_1}{R_0^2}\cos\theta = 0 \therefore b_1 = E_0R_0^3
$$
\[
\psi_{\text{外}} = \psi_0 - E_0 R \cos \theta + \frac{b_0}{R} + \frac{E_0 R_0^3}{R^2} \cos \theta
\]

又由边界条件
\[
\frac{\partial \psi_{\text{外}}}{\partial n} = Q \quad \therefore \quad b_0 = \frac{Q}{4\pi \varepsilon_0}
\]

\[
\psi_{\text{外}} = \frac{Q}{4\pi \varepsilon_0 R_0} - \psi_0, R < R_0
\]

\[
\psi_{\text{内}} = \frac{Q}{4\pi \varepsilon_0 R} + \frac{E_0 R_0^3}{R^2} \cos \theta - E_0 R \cos \theta, R > R_0
\]

3. 均匀介质球的中心置一点电荷 \(Q_f \)，球的电容率为 \(\varepsilon \)，球外为真空，试用分离变数法求空间电势，将结果与使用高斯定理所得结果比较。

提示：空间各点的电势是点电荷 \(Q_f \) 的电势 \(\frac{Q_f}{4\pi \varepsilon R} \) 与球面上的极化电荷所产生的电势的叠加，后者满足拉普拉斯方程。

解：一. 高斯法
在球外， \(R > R_0 \)，由高斯定理有： \(\varepsilon_0 \oint \vec{E} \cdot d\vec{s} = \oint P = Q_f = Q_f \)。（对于整个导体球而言，束缚电荷 \(Q_p = 0 \)）

\[
\therefore \quad \vec{E} = \frac{Q_f}{4\pi \varepsilon_0 R^2}
\]

积分后得： \(\psi_{\text{外}} = \frac{Q_f}{4\pi \varepsilon_0 R} + C \)。（是积分常数）

又由于 \(\psi_{\text{外}} |_{R \to \infty} = 0 \) \(\therefore C = 0 \)

\[
\therefore \psi_{\text{外}} = \frac{Q_f}{4\pi \varepsilon_0 R} \ (R > R_0)
\]

在球内， \(R < R_0 \)，由介质中的高斯定理： \(\oint \vec{D} \cdot d\vec{s} = Q_f \)

又 \(\vec{D} = \varepsilon \vec{E} \) \(\therefore \quad \vec{E} = \frac{Q_f}{4\pi \varepsilon R^2} \)

积分后得到： \(\psi_{\text{内}} = \frac{Q_f}{4\pi \varepsilon R} + C \)。（是积分常数）
二. 分离变量法

本题所求的电势是由点电荷 Q_f 与介质球的极化电荷两者各自产生的电势的叠加，且有

由于 φ 是球对称的，其通解为 $\varphi = \frac{Q_f}{4\pi \varepsilon R} + \varphi'$

由于 φ' 是球对称的，其通解为 $\varphi' = a + \frac{b}{R}$

由于球心有 Q_f 的存在，所以有 $\varphi |_{R=0} = \infty$，即 $\varphi_{00} = \frac{Q_f}{4\pi \varepsilon R} + a$

在球外有 $\varphi |_{R=\infty} = 0$，即 $\varphi_{0} = \frac{Q_f}{4\pi \varepsilon R} + \frac{b}{R}$

由边界条件得

$$
\begin{align*}
\varphi_{00} &= \varphi_{0} |_{R=R_0} \text{，即} \frac{Q_f}{4\pi \varepsilon R_0} + a = \frac{Q_f}{4\pi \varepsilon R_0} + \frac{b}{R_0} \\
\varepsilon \frac{\partial \varphi_{00}}{\partial R} &= \varepsilon_0 \frac{\partial \varphi_{0}}{\partial R} |_{R=R_0} \text{，即} -\frac{\varepsilon_0 Q_f}{4\pi \varepsilon R_0^2} - \frac{\varepsilon_0 b}{R_0^2} = -\frac{\varepsilon Q_f}{4\pi \varepsilon R_0^2} \\
\therefore b &= \frac{Q_f}{4\pi \varepsilon} \left(\frac{1}{\varepsilon_0} - \frac{1}{\varepsilon} \right), a = \frac{Q_f}{4\pi \varepsilon R_0} \left(\frac{1}{\varepsilon_0} - \frac{1}{\varepsilon} \right)
\end{align*}
$$

由$
\begin{align*}
\varphi_{00} &= \frac{Q_f}{4\pi \varepsilon_0 R} R > R_0 \\
\varphi_{00} &= \frac{Q_f}{4\pi \varepsilon R} + \frac{Q_f}{4\pi \varepsilon_0 R_0} - \frac{Q_f}{4\pi \varepsilon R_0}, R < R_0
\end{align*}$
4. 均匀介质球（电容率为 ε_1）的中心置一自由电偶极子 \vec{P}_f，球外充满了另一种介质（电容率为 ε_2），求空间各点的电势和极化电荷分布。

提示：同上题，$\phi = \frac{\vec{P}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \phi'$,而 ϕ' 满足拉普拉斯方程。

解：
$$\begin{align*}
\varepsilon_1 \frac{\partial \phi_{\|}}{\partial R} &= \varepsilon_2 \frac{\partial \phi_{\|}}{\partial R}, \\
\varepsilon_1 \frac{\partial \phi_{\perp}}{\partial R} \bigg|_{R_0} &= \varepsilon_1 \left(-\frac{2P_1 \cos \theta}{4\pi \varepsilon_1 R_0^3} + \sum \Lambda_1 R_0^{-l} P_l \right), \\
\varepsilon_2 \frac{\partial \phi_{\perp}}{\partial R} \bigg|_{R_0} &= \varepsilon_2 \left(-\frac{2P_1 \cos \theta}{4\pi \varepsilon_1 R_0^3} - \sum (1+l) \frac{B_l}{R_0^{l+2}} P_l \right),
\end{align*}$$

比较 $P_l(\cos \theta)$ 系数：

$$B_0 = 0, \Lambda_0 = 0$$

$$-\frac{2 \rho_f}{4\pi R_0^3} + \varepsilon_1 A_1 = -\frac{2 \varepsilon_2 \rho_f}{4\pi \varepsilon_1 R_0^3} - \frac{2 \varepsilon_2 B_1}{R_0^3}, \text{及 } A_1 = \frac{B_1}{R_0^3}$$

得：
$$A_1 = \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f}{4\pi \varepsilon_1 (\varepsilon_1 + 2\varepsilon_2) R_0^3}, B_1 = \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f}{4\pi \varepsilon_1 (\varepsilon_1 + 2\varepsilon_2)}$$

比较 $P_2(\cos \theta)$ 的系数：

$$2\varepsilon_1 A_2 R_0 = -\frac{3B_2}{R_0^4}, A_2 = \frac{B_2}{R_0^4}$$

及 $A_2 (1 + \frac{1}{\varepsilon_1 R_0}) = 0$

所以 $A_2 = 0, B_2 = 0$. 同理，$A_l = B_l = 0, (l = 2, 3 \cdots)$

最后有：

$$\begin{align*}
\phi_{\|} &= \frac{\vec{P}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f}{4\pi \varepsilon_1 (\varepsilon_1 + 2\varepsilon_2) R_0^3} R \cos \theta = \frac{\vec{P}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3}, (R < R_0) \\
\phi_{\perp} &= \frac{\vec{P}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f}{4\pi \varepsilon_1 (\varepsilon_1 + 2\varepsilon_2) R^2} R \cos \theta = \frac{\vec{P}_f \cdot \vec{R}}{4\pi \varepsilon_1 R^3} + \frac{2(\varepsilon_1 - \varepsilon_2) \rho_f \cdot \vec{R}}{4\pi \varepsilon_1 (\varepsilon_1 + 2\varepsilon_2) R^3} = \frac{3 \rho_f \cdot \vec{R}}{4\pi (\varepsilon_1 + 2\varepsilon_2) R^4}, (R > R_0)
\end{align*}$$
球面上的极化电荷密度

$$\sigma_p = P_{in} - P_{2n} \cdot \vec{n}$$ 从 2 指向 1，如果取外法线方向，则

$$\sigma_p = P_{\phi in} - P_{\phi 2n} = [(\varepsilon_2 - \varepsilon_0)\nabla \phi_{\phi in}] - [(\varepsilon_1 - \varepsilon_0)\nabla \phi_{\phi 2n}]$$

$$= -(\varepsilon_2 - \varepsilon_0) \frac{\partial \phi_{\phi in}}{\partial R} + (\varepsilon_1 - \varepsilon_0) \frac{\partial \phi_{\phi 2n}}{\partial R} |_{R=R_0}$$

$$= (\varepsilon_2 - \varepsilon_0) \left(-6 \rho_f \cos \theta \right) - \frac{6(\varepsilon_0 - \varepsilon_2) \rho_f \cos \theta}{4\pi(\varepsilon_1 + 2\varepsilon_2)R_0^3} - (\varepsilon_1 - \varepsilon_0) \left(\frac{2(\varepsilon_1 - \varepsilon_2) - 2(\varepsilon_1 + 2\varepsilon_2)}{4\pi(\varepsilon_1 + 2\varepsilon_2)R_0^3} \rho_f \cos \theta \right)$$

$$= \frac{6\varepsilon_0(\varepsilon_0 - \varepsilon_2) + 6\varepsilon_2(\varepsilon_1 - \varepsilon_0)}{4\pi \varepsilon_1(\varepsilon_1 + 2\varepsilon_2)R_0^3} \rho_f \cos \theta = \frac{3\varepsilon_0(\varepsilon_0 - \varepsilon_2)}{2\pi \varepsilon_1(\varepsilon_1 + 2\varepsilon_2)R_0^3} \rho_f \cos \theta$$

求极化偶极子；

$$\vec{P}_f = q \vec{l}$$ 可以看成两个点电荷相距 1，对每一个点电荷运用高斯定理，就得到在每个点电荷旁边有极化电荷

$$q_p = \left(\frac{\varepsilon_0}{\varepsilon_1} - 1\right)q_f, -q_p = \left(\frac{\varepsilon_0}{\varepsilon_1} - 1\right)(-q_f)$$，两者合起来就是极化偶极子

$$\vec{P}_p = (\frac{\varepsilon_0}{\varepsilon_1} - 1)\vec{P}_f$$

5. 充满介质球壳地内外半径为 R_1 和 R_2，球心置一偶极子 \vec{P}，球壳上带电 Q，求空间各点电势和电荷分布。

解：

$$\begin{cases}
 \nabla^2 \phi_3 = 0, \phi_3 |_{r \rightarrow \infty} = 0 \\
 \phi_2 = C, \phi_2 |_{r=0} = \infty \\
 \phi_1 = \frac{\vec{P} \cdot \vec{r}}{4\pi \varepsilon_0 r^3} + \phi_1 |_{r \rightarrow 0} \text{为有限值}
 \end{cases}$$

$$\begin{cases}
 \phi_3 = \sum \frac{B_i}{r^{i+1}} P_i(\cos \theta), \phi_3 |_{r=R_2} = C \\
 \phi_2 = C, \phi_2 |_{r=R_1} = C \\
 \phi_1 = \frac{\vec{P}_f \cdot \vec{r}}{4\pi \varepsilon_0 r^3} + \sum A_i r^i P_i(\cos \theta) - \int \frac{\partial \phi_3}{\partial r} |_{r=R_2} dS + \int \frac{\partial \phi_1}{\partial r} dS |_{r=R_1} = \frac{Q}{\varepsilon_0}
 \end{cases}$$
\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{B_0}{R_2^2} + \frac{B_1}{R_2^3} \cos \theta + \frac{B_2}{R_2^4} P_2 + \cdots = C \\
-\frac{P_f \cos \theta}{4\pi \varepsilon_0 R_1^4} + A_0 + A_1 R_1 \cos \theta + \cdots = C
\end{array} \right.
\end{aligned}
\]

即：

\[
A_0 = \frac{B_0}{R_2} = C, (A_i R_i + \frac{P_f}{4\pi \varepsilon_0 R_1^3}) \cos \theta = 0, B_i = 0 (l = 1, 2, 3 \cdots), A_i = 0 (l = 2, 3, 4 \cdots)
\]

又：

\[
\frac{\partial \phi_1}{\partial r} = -\frac{2P_f \cos \theta}{4\pi \varepsilon_0 R_1^3} + \sum l A_i R_i^{l-1} P_l = -\frac{P_f \cos \theta}{2\pi \varepsilon_0 R_1^3} + A_1 \cos \theta + \cdots
\]

\[
\frac{\partial \phi_3}{\partial r} = \sum (l - 1) \frac{B_l}{r^{l+2}} P_l = -\frac{B_0}{R_1^2} - 2 \frac{B_1}{R_1^3} \cos \theta + \cdots
\]

则：

\[
-\oint \frac{\partial \phi_3}{\partial r} dS = \oint \frac{B_0}{R_1^2} dS = \frac{B_0}{R_1^2} \oint dS = 4\pi R_1^2 \frac{B_0}{R_1^2} = 4\pi B_0
\]

\[
\oint \frac{\partial \phi_1}{\partial r} dS = \int_0^{2\pi} \int_0^\infty \frac{P_f}{2\pi \varepsilon_0 R_1^3} \cos \theta R_1^2 \sin \theta \, d\theta \, d\varphi + \int_0^{2\pi} \int_0^\pi \frac{P_f}{4\pi \varepsilon_0 R_1^3} \cos \theta R_1^2 \sin \theta \, d\theta \, d\varphi = 0 + 0 = 0
\]

故：

\[
-\oint \frac{\partial \phi_3}{\partial r} dS + \oint \frac{\partial \phi_1}{\partial r} = 4\pi B_0 = \frac{Q}{\varepsilon_0}
\]

\[
B_0 = \frac{Q}{4\pi \varepsilon_0}, A_0 = \frac{Q}{4\pi \varepsilon_0 R_2}, A_1 = -\frac{P_f}{4\pi \varepsilon_0 R_1^3}
\]

最后有：

\[
\phi_1 = \frac{\vec{P} \cdot \vec{r}}{4\pi \varepsilon_0 r^2} - \frac{\vec{P}_f \cdot \vec{r}}{4\pi \varepsilon_0 R_1^3} + \frac{Q}{4\pi \varepsilon_0 R_2}, (r < R_1)
\]

\[
\phi_3 = \frac{Q}{4\pi \varepsilon_0 r}, (r > R_2)
\]

\[
\phi_2 = \frac{Q}{4\pi \varepsilon_0 R_2}, (R_1 < r < R_2)
\]

电荷分布：

在 \(r = R_1 \) 的面上

\[
\sigma_{P_1} = \varepsilon_0 \frac{\partial \phi_1}{\partial r} = -\frac{P_f \cos \theta}{2\pi R_1^3} + \frac{P_f \cos \theta}{4\pi R_1^3} = -\frac{P_f \cos \theta}{4\pi R_1^4}
\]

在 \(r = R_2 \) 面上

\[
\sigma_{P_2} = -\varepsilon_0 \frac{\partial \phi_3}{\partial r} = \frac{Q}{4\pi R_2^2}
\]

- 8 -
6. 在均匀外电场 E_0 中置入一带均匀自由电荷 ρ_f 的绝缘介质球 ε，求空间各点的电势。

$$\phi_n = \sum (A_i r^i + \frac{B_i}{r^{i+1}}) P_i (\cos \theta)$$

解：

$$\phi_n = -\frac{1}{6\varepsilon} \rho_f r^2 + \phi$$

$$\nabla^2 \phi = 0$$

ϕ_n 是由高斯定理解得的，ρ_f 的作用加上 E_0 的共同作用。

$$\phi_n \bigg|_{r \to \infty} = -E_0 r \cos \theta, \phi \bigg|_{r \to 0} \text{有限}$$

$$\phi_n = -E_0 r \cos \theta + \sum B_i r^{i-1} P_i (\cos \theta)$$

$$\phi_n = \frac{1}{6\varepsilon} \rho_f r^2 + \sum c_i r^i P_i (\cos \theta)$$

$$\phi_n = \phi_n (r = R_0)$$

$$-E_0 R_0 \cos \theta + \frac{B_0}{R_0} + \frac{B_1}{R_0} + \frac{B_2}{R_0} P_2 + = \frac{1}{6\varepsilon} \rho_f R_0^2 + c_0 + c_1 R_0 \cos \theta + c_2 R_0^2 P_2 +$$

即 $\frac{\rho_f}{6\varepsilon} R_0^2 + c_0 = \frac{B_0}{R_0}$

$$-E_0 R_0 + \frac{B_1}{R_0} = c_1 R_0$$

$$\frac{B_2}{R_0^3} = c_2 R_0^2$$

$$\varepsilon \frac{\partial \phi_n}{\partial r} = \varepsilon_0 \frac{\partial \phi_n}{\partial r}$$

$$\frac{\partial \phi_n}{\partial r} = \left[\frac{\rho_f}{3\varepsilon} R_0 + \sum l c_i R_0^{i-1} P_i (\cos \theta) \right] = \frac{\rho_f}{3} R_0 + \varepsilon_1 \cos \theta + 2\varepsilon_2 R_0 P_2 + \cdots$$

$$\frac{\partial \phi_n}{\partial r} = \varepsilon_0 (-E_0 \cos \theta + \sum (-1)^i \frac{B_i P_i}{R_0^{i+2}})$$
电动力学习题解答参考
第二章 静电场

\[
\begin{align*}
\phi_r &= -E_0 r \cos \theta + \frac{1}{3} \frac{R_0^3 \rho_f}{r^2} + \frac{E_0 R_0^3}{r^2} \cos \theta - \frac{3E_0 E_0 R_0^3}{(e + 2\varepsilon) r^2} \cos \theta, \quad r > R_0 \\
\phi_\theta &= -\frac{\rho_f}{6e} r^2 + \frac{R_0^2 \rho_f}{3e} + \frac{1}{6e} - \frac{3E_0 E_0 - r \cos \theta, \quad r < R_0
\end{align*}
\]

\[
\begin{align*}
\frac{\rho_f}{3} R_0 &= -\frac{E_0 B_0}{R_0^2}, \quad \alpha C_1 = -E_0 E_0 - \frac{2E_0 B_1}{R_0^3}, \quad 2\alpha C_2 R_0 = -\frac{3E_0 B_2}{R_0^4} \ldots
\end{align*}
\]

解方程得：
\[
B_0 = -\frac{R_0^3}{3E_0} \rho_f, \quad C_0 = -R_0^2 \rho_f \left(\frac{1}{3E_0} + \frac{1}{6e} \right)
\]

\[
B_1 = -\frac{3E_0 E_0 R_0^3}{e + 2\varepsilon} + E_0 R_0^3, \quad C_1 = -\frac{3E_0 E_0}{e + 2\varepsilon}
\]

及：
\[
2\alpha C_2 R_0 = -3E_0 R_0 C_2 \quad \text{即} \quad C_2 (2E_0 + 3E_0 R_0) = 0 \quad C_2 = B_2 = 0
\]

同理：
\[
C_l = B_l = 0 \quad l = 2, 3, \ldots
\]

7. 在一个很大的电解槽中充满电导率为 σ_2 的液体，使其中流着均匀的电流 δf_0，今在液体中置入一个电导率为 σ_1 的小球，求稳恒时电流和电荷分布，讨论 $\sigma_1 >> \sigma_2$ 及 $\sigma_2 >> \sigma_1$ 两种情况的电流分布特点。

先求空间电势，
\[
\begin{cases}
\nabla^2 \phi_n = 0 \\
\n\nabla^2 \phi_\theta = 0
\end{cases} \quad \phi_n = \phi_\theta \quad r = R_0
\]

因为 $\delta_{\phi_n} = \delta_{\phi_\theta} (r = R_0)$（稳恒电流认为表面无电流堆积，即流入 n = 流出 n）

故：
\[
\sigma_1 \frac{2\phi_n}{2r} = \sigma_2 \frac{2\phi_\theta}{2r}
\]

并且 $\delta_{\phi_\theta} \big|_{r \rightarrow \infty} = \delta_0$, 即 $\phi_\theta \big|_{r \rightarrow \infty} = -E_0 r \cos \theta$ （$j_{f_0} = \sigma_2 E_0$）

$\phi_n \big|_{r \rightarrow \infty}$ 有限 可以理解为在恒流时 $r \rightarrow 0$ 的小封闭曲面流入 = 流出
这时的解即为：

\[
\begin{cases}
\phi_{R_o} = \frac{-3\sigma_2}{\sigma_1 + 2\sigma_2} E_0 r \cos \theta, r < R_o \\
\phi_{f} = -E_0 r \cos \theta + E_0 R_o^2 \frac{(\sigma_1 - \sigma_2)}{(\sigma_1 + 2\sigma_2)} \frac{\cos \theta}{r^2}, r > R_o
\end{cases}
\]

求内外电场：

\[
E = -\nabla \phi = \left(-\frac{2\phi_{f}}{2r} + \frac{2\phi_{p}}{2\theta} + \frac{1}{r \sin \theta} \frac{2\phi}{2} \hat{e}_\theta \right)
\]

\[
\vec{E}_{R_o} = -\frac{2\phi_{f}}{2r} \hat{e}_r + \frac{1}{r \cos \theta} \frac{2\phi_{p}}{2\theta} \hat{e}_\theta = \frac{3\sigma_2}{\sigma_1 + 2\sigma_2} E_0 (\cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta)
\]

\[
= \frac{3\sigma_2}{\sigma_1 + 2\sigma_2} E_0 \hat{e}_z
\]

\[
E_{n} = E_0 (\cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta) + \frac{E_0 R_o^2}{r^3} \left(\frac{\sigma_1 - \sigma_2}{\sigma_1 + 2\sigma_2} \left[2 \cos \theta \hat{e}_r + \sin \theta \hat{e}_\theta \right] \right)
\]

\[
= E_0 (\cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta) + \frac{E_0 R_o^2}{r^3} \left(\frac{\sigma_1 - \sigma_2}{\sigma_1 + 2\sigma_2} \left[3 \cos \theta \hat{e}_r - \cos \theta \hat{e}_\theta \right] \right)
\]

\[
= E_0 (\cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta) + \frac{E_0 R_o^2}{r^3} \left(\frac{3\sigma_2}{\sigma_1 + 2\sigma_2} \left[\frac{3E_0 \cos \theta}{r^3} \hat{e}_r - \frac{\vec{E}_0}{r^3} \right] \right)
\]

求电流：

根据 \(j_\parallel = \sigma_1 \vec{E}_{n} \)

及 \(j_\parallel = \sigma_2 \vec{E}_{f} \)

则 \(j_{f0} = \sigma_2 \vec{E}_0 \)

\[
\left(\frac{j_{f0} \cdot \hat{r}}{r^5} \right) = \sigma_2 E_0 r \cos \theta \hat{e}_r
\]

得：

\[
j_{f0} = \frac{3\sigma_1}{\sigma_1 + 2\sigma_2} \vec{j}_{f0}, j_{f0} = j_{f0} + \frac{\sigma_1 - \sigma_2}{\sigma_1 + 2\sigma_2} R_o^2 \left[\frac{3(j_{f0} \cdot \hat{r})}{r^5} - \vec{j}_{f0} \right]
\]

\[
\omega_f = \varepsilon_0 (E_{2n} - E_{1n}) = \varepsilon_0 (E_{f0} - E_{f0}) = \frac{3\varepsilon_0 E_0 \cos \theta}{\sigma_1 + 2\sigma_2} (\sigma_1 - \sigma_2)
\]
8. 半径为 R_0 的导体球外充满均匀绝缘介质 ε，导体球接地，离球心为 a 处 ($a > R_0$) 置一点电荷 Q_f，试用分离变数法求空间各点电势，证明所得结果与镜像法结果相同。

提示:

$$\frac{1}{r} = \frac{1}{\sqrt{R^2 + a^2 - 2ar \cos \theta}} = \frac{1}{a} \sum_{n=0}^{\infty} \left(\frac{R}{a} \right)^n P_n(\cos \theta). (R > a)$$

解: 1) 分离变数法

由电势叠加原理，球外电势为:

$$\phi_{\text{外}} = \phi' + \phi''$$

其中 ϕ' 是球面上感应电荷产生的电势，且满足定解条件:

$$\begin{align*}
\nabla^2 \phi' &= 0, (r > R_0) \\
\phi' |_{r \to \infty} &= 0 \\
\phi' |_{r = R_0} &= 0
\end{align*}$$

根据分离变数法得:

$$\phi' = \sum_{l=0}^{\infty} \frac{B_l}{R^{l+1}} P_l(\cos \theta), (r > R_0)$$

(1)

又 $\phi_{\text{外}} |_{r = R_0} = \sum_{n=0}^{\infty} \left[\frac{Q_f}{4\pi \varepsilon a} \left(\frac{R}{a} \right)^l \right] P_l(\cos \theta) = 0$

即:

$$\frac{Q_f}{4\pi \varepsilon a} + \frac{B_0}{R_0} = 0, \frac{Q_f}{4\pi \varepsilon a} \frac{R_0}{a} + \frac{B_1}{R_0^2} = 0, ..., \frac{Q_f}{4\pi \varepsilon a} \left(\frac{R_0}{a} \right)^l + \frac{B_l}{R_0^{l+1}} = 0$$

\[
\begin{align*}
B_0 &= -R_0 \frac{Q_f}{4\pi \varepsilon a} \\
B_1 &= -R_0^2 \frac{Q_f}{4\pi \varepsilon a} \\
B_l &= -R_0^{2l} \frac{Q_f}{4\pi \varepsilon a} \\
\end{align*}
\]

代入 (1) 式得解。
2）镜像法

如图建立坐标系，本题具有球对称性，设在球内 \(r_0 \) 处有像电荷 \(Q', Q' \) 代替球面上感应电荷对空间电场的作用，由对称性， \(Q' \) 在 \(OQ_f \) 的连线上。

先令场点 \(P_1 \) 在球面上，根据边界条件有：

\[
\frac{Q_f}{r_{Q_f}} + \frac{Q'}{r_{Q'}} = 0, \quad \text{即} \quad \frac{r_{Q'}}{r_{Q'}} = -\frac{Q'}{Q_f} = \text{常数}
\]

将 \(Q' \) 的位置选在使 \(\Delta Q', P_1 O \Delta Q_f, P_1 O \) 则有：

\[
\frac{r_{Q'}}{r_{Q_f}} = \frac{R_0}{a} (\text{常数}), \quad \text{为达到这一目的，令} \quad Q' \text{ 距圆心为} r_0,
\]

则：

\[
\frac{r_0}{R_0} = \frac{R_0}{a}, \quad r_0 = \frac{R_0^2}{a}
\]

并有：

\[
\frac{r_{Q'}}{r_{Q_f}} = -\frac{Q'}{Q_f} = \frac{R_0}{a} = \text{常数,} \quad Q' = -\frac{R_0 Q_f}{a}
\]

这样，满足条件的像电荷就找到了，空间各点电势为：

\[
\Phi_r = \frac{Q_f}{4\pi \varepsilon r_1} + \frac{Q'}{4\pi \varepsilon r_2} = \frac{Q_f}{4\pi \varepsilon} \left[\frac{1}{\sqrt{a^2 + r^2 - 2ar \cos \theta}} - \frac{R_0 Q_f}{a} \right], \quad (r > a).
\]

将分离变数法所得结果展开为 Legend 级数，可证明两种方法所求得的电势相等。

9、接地的空心导体球的内外半径为 \(R_1 \) 和 \(R_2 \)，在球内离球心为 \(a (a < R_0) \) 处置一点电荷 \(Q \)，用镜像法求电势。导体球上的感应电荷有多少？分布在内表面还是外表面？

解：球外的电势及导体内电势恒为 0。

而球内电势只要满足 \(\Phi_{|r=R_1} = 0 \) 即可。

因此做法及答案与上题同，解略。

\[
\Phi_{|r} = \frac{1}{4\pi \varepsilon_0} \left[\frac{Q}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} - \frac{QR_1}{a} \right]
\]

因为球外 \(\Phi = 0 \)，故感应电荷集中在内表面，并且为一 \(Q \)。
10. 上题的导体球壳不接地，而是带总电荷 Q_0，或使其有确定电势 ϕ_0，求这两种情况的电势。又问 ϕ_0 与 Q_0 是何种关系时，两种情况的解是相等的？

解：由于球壳上自由电荷 Q_0，并且又是导体球壳，故整个球壳应该是等势体。其电势用高斯定理求得为 $\frac{Q + Q_0}{4\pi \varepsilon_0 R_2}$，所以球壳内的电势将由 Q 的电势，像电荷 $-\frac{QR_1}{a}$ 的电势及球壳的电势叠加而成，球外电势利用高斯公式就可得。

故：

$$
\begin{align*}
\phi &= \left\{ \begin{array}{ll}
\frac{1}{4\pi \varepsilon_0} \frac{Q}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} & (R < R_1) \\
\frac{QR_1}{a R_2} & (R > R_1)
\end{array} \right.
\end{align*}
$$

或

$$
\begin{align*}
\phi &= \left\{ \begin{array}{ll}
\frac{1}{4\pi \varepsilon_0} \frac{Q}{\sqrt{R^2 + a^2 - 2Ra \cos \theta}} & (R < R_1) \\
\frac{QR_1}{a} & (R > R_1)
\end{array} \right. + \phi_0 \quad (R > R_2)
\end{align*}
$$

当 $\phi_0 = \frac{Q + Q_0}{4\pi \varepsilon_0 R_2}$ 时两种情况的解相同。

11. 在接地的导体平面上有一半径为 a 的半球凸部（如图），半球的球心在导体平面上，点电荷 Q 位于系统的对称轴上，并与平面相距为 b ($b > a$)，试用电象法求空间电势。

解：如图，利用镜像法，根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型，可确定三个镜像电荷的电量和位置。

$$
Q_1 = -\frac{a}{b} Q, r_1 = \frac{a^2}{b} \vec{r}
$$

$$
Q_2 = \frac{a}{b} Q, r_2 = -\frac{a^2}{b} \vec{r}
$$

$$
Q_3 = -Q, r_3 = b \vec{r}
$$

$$
\phi = \frac{Q}{4\pi \varepsilon_0} \left[\frac{1}{\sqrt{R^2 + b^2 - 2Rb \cos \theta}} - \frac{1}{\sqrt{R^2 + b^2 + 2Rb \cos \theta}} + \frac{a}{b} \right] R \cos \theta
$$
12. 有一点电荷 Q 位于两个互相垂直的接地导体平面所围成的直角空间内，它到两个平面的距离为 a 和 b，求空间电势。
解：可以构造如图所示的三个象电荷来代替两导体板的作用。

$$
\phi = \frac{Q}{4\pi \varepsilon_0} \left[\frac{1}{\sqrt{(x-x_0)^2 + (y-a)^2 + (z-b)^2}} - \frac{1}{\sqrt{(x-x_0)^2 + (y-a)^2 + (z+b)^2}} - \frac{1}{\sqrt{(x-x_0)^2 + (y+a)^2 + (z-b)^2}} + \frac{1}{\sqrt{(x-x_0)^2 + (y+a)^2 + (z+b)^2)}}, (y, z > 0) \right]
$$

13. 设有两个平面围成的直角形无穷容器，其内充满电导率为 σ 的液体。取该两平面为 xz 面和 yz 面，在 (x_0,y_0,z_0) 和 $(x_0,y_0,-z_0)$ 两点分别置正负电极并通以电流 I，求导电液体中的电势。
解：本题的物理模型是，由外加电源在 A、B 两点间建立电场，使溶液中的载流子运动形成电流 I，当系统稳定时，是恒定场，即 \(\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0 \) 中，$\frac{\partial \rho}{\partial t} = 0$，对于恒定的电流，可按静电场的方式处理。
于是，在 A 点取包围 A 的包围面：
$$
\int \vec{E} \cdot d\vec{s} = \frac{Q}{\varepsilon_n} \\ \ \text{而又有} \ \ \ \vec{i} = \int \vec{E} \cdot d\vec{s} \right\} \implies \frac{1}{\sigma} I = \int \vec{E} \cdot d\vec{s}
$$

\therefore 有 $\frac{1}{\sigma} I = \frac{Q}{\varepsilon_n} \implies Q = \frac{I \varepsilon_1}{\sigma}$

对 B 有 $Q_B = -Q = -\frac{I \varepsilon_1}{\sigma}$

又在容器壁上，$\vec{j}_n = 0$，即元电流流入容器壁。

由：$\vec{j} = \sigma \vec{E}$，有 $\vec{j}_n = 0$ 时，$\vec{E}_n = 0$

\therefore 可取如右图所示电像：

- 15 -
14. 画出函数 $\frac{d\delta(x)}{dx}$ 的图，说明 $\rho = -(\vec{P} \cdot \nabla)\delta(x)$ 是一个位于原点的偶极子的电荷密度。

解：
$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}$$

$$\frac{d\delta(x)}{dx} = \lim_{\Delta x \to 0} \frac{\delta(x + \Delta x) - \delta(x)}{\Delta x}$$

1） $x \neq 0$ 时，$\frac{d\delta(x)}{dx} = 0$

2） $x = 0$ 时，
 a） $\Delta x > 0, \frac{d\delta(x)}{dx} = \lim_{\Delta x \to 0} \frac{0 - \infty}{\Delta x} = -\infty$
 b） $\Delta x < 0, \frac{d\delta(x)}{dx} = \lim_{\Delta x \to 0} \frac{0 - \infty}{\Delta x} = +\infty$

15. 证明

1） $\delta(ax) = \frac{1}{a}\delta(x), (a > 0)$ （若 $a<0$, 结果如何？）

2） $x\delta(x) = 0$

证明：
1）根据 $\delta[\phi(x)] = \sum_k \delta(x - x_k)/|\phi'(x_k)|$, 所以 $\delta(ax) = \frac{\delta(x)}{|a|}$

2）从 $\delta(x)$ 的定义可直接证明。

有任意良函数 $f(x)$, 则 $f(x) \cdot x = F(x)$ 也为良函数

$$\int f(x) x \delta(x) dx = (f(x) \cdot x)|_{x=0} = 0$$

16. 一块极化介质的极化矢量为 $\vec{P}(x')$, 根据偶极子静电势的公式，极化介质所产生的静电势为

$$\varphi = \int_V \frac{\vec{P}(x') \cdot \vec{r}}{4\pi \varepsilon_0 r^3} dV'$$

另外，根据极化电荷公式 $\rho_{\vec{P}} = -\nabla' \cdot \vec{P}(x')$ 及 $\sigma_{\vec{P}} = \vec{n} \cdot \vec{P}$, 极化介质所产生的电势又可表为

$$\varphi = \int_V \frac{\nabla' \cdot \vec{P}(x')}{{4\pi \varepsilon_0 r}} dV' + \oint_S \frac{\vec{P}(x') \cdot d\vec{S}'}{{4\pi \varepsilon_0 r}}$$

试证明以上两表达式是等同的。
证明：

\[
\phi = \frac{1}{4\pi \varepsilon_0} \int \frac{\vec{P}(\vec{x}) \cdot \hat{r}}{r^3} dV' = \frac{1}{4\pi \varepsilon_0} \int \frac{\vec{P}(\vec{x}) \cdot \nabla}{r} dV'
\]

又有：

\[
\nabla \cdot (\frac{1}{r} \vec{P}) = \frac{1}{r} \vec{P} + \vec{P} \cdot \nabla \frac{1}{r}
\]

则：

\[
\phi = \frac{1}{4\pi \varepsilon_0} \left[\int \frac{\nabla \cdot \vec{P}}{r} dV' + \int \frac{\vec{P} \cdot \nabla}{r} dV' \right]
= \frac{1}{4\pi \varepsilon_0} \left[\int \frac{\nabla \cdot \vec{P}}{r} dV' + \int_S \frac{\vec{P} \cdot \hat{n}}{r} dS \right]
\]

刚好是极化体电荷的总电势和极化面电荷产生的总电势之和。

17. 证明下述结果，并熟悉面电荷和面偶极层两侧电势和电场的变化。

（1）在面电荷两侧，电势法向微商有跃变，而电势是连续的

（2）在面偶极层两侧，电势有跃变

\[
\phi_2 - \phi_1 = \frac{1}{\varepsilon_0} \hat{n} \cdot \vec{P}
\]

而电势的法向微商是连续的。（各带等量正负面电荷密度 \(\pm \sigma \) 而靠的很近的两个面，形成面偶极层，而偶极矩密度 \(\vec{P} = \lim_{\sigma \to 0} \lim_{l \to \infty} \sigma \vec{g} \)）

证明：1）如图可得：

\[2E \cdot \Delta S = \frac{\sigma \cdot \Delta S}{\varepsilon_0},\]

故：

\[E = \frac{\sigma}{2\varepsilon_0} \phi_1 - \phi_2 = \frac{\sigma}{2\varepsilon_0} z - \frac{\sigma}{2\varepsilon_0} z = 0\]

面：

\[
\frac{\partial \phi_1}{\partial n_1} = E_1 = \frac{\sigma}{2\varepsilon_0} \vec{e}_z, \quad \frac{\partial \phi_2}{\partial n_2} = E_2 = \frac{\sigma}{2\varepsilon_0} (-\vec{e}_z)
\]

\[\therefore \frac{\partial \phi_1}{\partial n_1} - \frac{\partial \phi_2}{\partial n_2} = \frac{\sigma}{\varepsilon_0}\]

2）可得：

\[E = \frac{\sigma}{\varepsilon_0} \vec{e}_z\]

故：

\[\phi_2 - \phi_1 = \lim_{l \to 0} \frac{E \cdot \vec{l}}{\varepsilon_0} = \lim_{l \to 0} \frac{\sigma \hat{n} \cdot \vec{l}}{\varepsilon_0} = \frac{\hat{n} \cdot \vec{P}}{\varepsilon_0}\]

又有：

\[
\frac{\partial \phi_1}{\partial n} = E, \quad \frac{\partial \phi_2}{\partial n} = E
\]
\[\Phi_{\text{总}} = \sum A_{i} r^{l} P_{l}(\cos \theta) \]

，这是 \(\Phi_{\text{总}} \) 按球函数展开的广义傅立叶级数，\(A_{i} r^{l} \) 是展开系数。

\[
A_{i} R_{0}^{l} = f_{i} = \frac{2l+1}{2} [\int_{0}^{\pi} \phi_{l} \cos \theta d \cos \theta] = \frac{2l+1}{2} \left[-\int_{0}^{\pi} \phi_{l} (\cos \theta) \sin \theta d \theta \right] \\
= \frac{2l+1}{2} \left[-\int_{0}^{\pi} \phi_{l} P_{l}(\cos \theta) \sin \theta d \theta + \int_{0}^{\pi} \phi_{l} P_{l}(\cos \theta) \sin \theta d \theta \right] \\
= \frac{2l+1}{2} \left[\phi_{l} \int_{0}^{\pi} P_{l}(\cos \theta)d \cos \theta - \phi_{l} \int_{0}^{\pi} P_{l}(\cos \theta)d \cos \theta \right] \\
= \frac{2l+1}{2} \phi_{l} \left[\int_{0}^{\pi} P_{l}(\cos \theta)d \cos \theta + \int_{0}^{\pi} P_{l}(\cos \theta)d \cos \theta \right]
\]

由 \(P_{l}(-x) = (-1)^{l} P_{l}(x) \)

则：\(A_{i} R_{0}^{l} = \frac{2l+1}{2} \phi_{l} [(-1)^{l+1} \int_{0}^{\pi} P(x)d\cos \theta + \int_{0}^{\pi} P(x)d\cos \theta] \)
当l为偶数时，\(A_l R_0^l = 0 \)

当l为奇数时，有:

\[
A_l R_0^l = \frac{2l+1}{2} \phi_0 \omega (-1)^{l+1} P_l(x) dx
\]

则：

\[
A_l = \frac{\phi_0 (-1)^{l+1} 2 \cdot 4 \cdot 6 \cdots (l+1) (2l+1)}{R_0^l}
\]

\[
\phi_{\theta_l} = \sum \frac{B_l}{r^{l+1}} P_l (\cos \theta)
\]

又

\[
\frac{B_l}{r^{l+1}} = \frac{2l+1}{2} \left[\int_0^l \phi_{\theta_l} P_l (\cos \theta) dx \right] = \phi_0 (-1)^{l+1} \frac{2 \cdots 4 \cdots (l+1) (2l+1)}{R_0^l}
\]

即：

\[
\phi_{\theta_l} = \sum (-1)^{l+1} \frac{2 \cdots 4 \cdots (l+1) (2l+1) R_0^l}{r} P_l (\cos \theta), (l为奇数，r > R_0)
\]