Superfluid

- Liquid Helium: Bose liquid and superfluidity
- Landau’s theory: two fluid model
- Bose-Einstein Condensation and superfluid
- ODLRO, spontaneous symmetry breaking, macroscopic wavefunction
- Gross-Pitaevskii (GP) equation
- Feynman’s picture

References:
1) “Theory of quantum liquids”, David Pines & Philippe Nozieres
2) “Statistical mechanics”, R. P. Feynman
Why helium?

• Bose liquid
 – 4He: inert gas, no hydrogen bond, weak interaction, light atom
 – Strong zero-point oscillation: difficult to form a solid
 – Remain a liquid down to the lowest temperature (London 1938)
 – 4He: bosons, unique Bose liquid in the laboratory
 – Quantum liquid: quantum-mechanical description is essential for the understanding of its properties.

• Superfluid
 – Gas-liquid transition at 5.2 K: first order, latent heat
 – A new liquid phase below 2.19 K: second order transition, no latent heat
 – Two quantum liquid phases: Helium I and Helium II
Phase transition in liquid 4He

- λ-transition
- no latent heat
- second order
- empirical law

$$C_v = \begin{cases}
a_+ + b \ln |T - T_c|, & T > T_c, \\
 a_- + b \ln |T - T_c|, & T < T_c.
\end{cases}$$

- T^3 specific heat
- bosonic modes with linear dispersion
- phonons
Phase diagram
Superfluid phenomena

- **Superfluidity in He II**
 - Superfluid: vanishing viscosity below the λ-point
 - Thermomechanical effect
 - Fountain effect

![Diagram](image)

Fig. 11.3 The thermomechanical effect.

- two He II containers, superleak
- constant density, temperature at each sides
- superfluid flow $\rightarrow \Delta P = \rho_s \Delta T$
- pressure difference \rightarrow fountain effect

Mechanocaloric effect

- Pressure difference
- Mass flow $A \rightarrow B$
- B cool down (zero entropy flow)
Fountain effect

(a) Electric Heater
 Capillary

(b) He II Fountain
 Capillary
 Radiant Heat
 Powder
 Cotton
Landau’s two-fluid model

Two components of fluid

- Superfluid: perfect background fluid, zero entropy and viscosity
- Normal fluid: some types of excitations, phonon gas

Density and velocity of two components

\[\rho_n, \; \rho_s, \; v_n, \; v_s \]

Specific heat of a phonon gas

\[C_V \propto T^3 \]

Explanation of thermomechanical effect

- Superfluid flows through a superleak
- The phonons are inherited because of the collision with the walls
Equations of motion

\[\rho(T) = \rho_n(T) + \rho_s(T) \]

For normal fluid

\[\rho_n \frac{\partial \vec{v}_n}{\partial t} + \rho_n \vec{v}_n \times \nabla \vec{v}_n = -\frac{\rho_n}{\rho} \nabla p - \rho_s s \nabla T + \eta \nabla^2 \vec{v}_n \]

For superfluid

\[\rho_s \frac{\partial \vec{v}_s}{\partial t} + \rho_s \vec{v}_s \times \nabla \vec{v}_s = -\frac{\rho_s}{\rho} \nabla p + \rho_s s \nabla T \]
Andronikashvili’s experiment

Determine the fractional densities of the superfluid and normal fluid components by measuring the period and decrement of a torsional pendulum immersed in He II.

Moment of inertia

\[I = I_{\text{disk}} + I_{\text{fluid}} \]

Measure resonant frequency

\[I \frac{d^2 \theta}{dt^2} = -k \theta \]
Second sound

- Density wave of the phonon gas: ρ_n / ρ
- A temperature wave rather than pressure pulses.

Remark: second sound exists in solid state too considering the anharmonic effect.

$$c_s = c / \sqrt{3}$$

Fig. 11.6 Velocity of second sound.
Phonons and rotons

For a background fluid with velocity v_s:

$$ E = E(p) + \vec{p} \cdot (\vec{v}_s - \vec{v}_n) $$

$$ \left\langle N_p \right\rangle = \frac{1}{e^{[E(p) + \vec{p} \cdot (\vec{v}_s - \vec{v}_n)]/k_B T} - 1} $$

$$ \left\langle \vec{p} \right\rangle = \sum_{\vec{p}} \vec{p} \left\langle N_p \right\rangle = -\sum_{\vec{p}} \vec{p} (\vec{p} \cdot \vec{v}_n) \frac{\partial}{\partial E_p} \frac{1}{e^{\beta E_p} - 1} $$

$$ \Rightarrow \rho_n = -\int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{p^2}{3} \frac{\partial}{\partial E_p} \frac{1}{e^{\beta E_p} - 1} $$

Fig. 11.7 Excitation curve for phonons and rotons.
For \(\nu \leq E(p) / p \) can not make spontaneous excitations, which would decay superflow, and flow is superfluid.

For \(\nu > E(p) / p \) and \(E < 0 \), can then make excitations spontaneously, and superfluidity ceases.

\[E = E(p) + \bar{p} \cdot \bar{v} \]

\(\nu_c = 60 \text{ m/sec} \)
BEC in a nutshell

Bose distribution

\[n(\vec{k}) = \frac{1}{e^{\beta(E_k - \mu)} - 1}, \]

Chemical potential at zero temperature

\[n = \frac{N}{V} = \frac{1}{(2\pi)^d} \int n(\vec{k}) \ d^d \vec{k}, \]

Since \(E_k > \mu \), if \(\mu \neq 0 \), then

\[T \to 0, \quad e^{\beta(E_k - \mu)} \to \infty, \quad n(\vec{k}) \to 0 \]
\[\Rightarrow \quad n \to 0 \]

The only possible solution is that

\[\mu = E_{k=0} = 0. \]
Bose distribution vs. Boltzmann distribution

\[n(E) = \frac{1}{e^{\beta(E-\mu)} - 1} \approx \frac{k_B T}{E - \mu} \]

\[\frac{n(E_1)}{n(E_0)} = \frac{E_0 - \mu}{E_1 - \mu} \]

\[\mu \rightarrow 0, \quad \frac{n(E_1)}{n(E_0)} \rightarrow \frac{E_0}{E_1} = 0 \]

\[n(\vec{k}) = n_0 \delta(\vec{k}) \]

\[n(E) = e^{-\beta(E-\mu)} \]

\[\frac{n(E_1)}{n(E_0)} = e^{\beta(E_0 - E_1)} \]

\[E_1 \rightarrow E_0, \quad \frac{n(E_1)}{n(E_0)} \rightarrow 1 \]

Bose Einstein condensation

\[n(\vec{k}) = \begin{cases}
\frac{1}{e^{\beta E_k} - 1}, & \vec{k} \neq 0 \\
n_0(T), & \vec{k} = 0
\end{cases} \]
BEC ≠ superfluidity

- A free boson condensate is not a superfluid
 - The absence of phonons
 - quadratic energy dispersion
 - BEC density ≠ superfluid density
- A boson fluid with phonon-like excitation spectrum is a superfluid.
- BEC is not a sufficient condition for superfluidity.
 - Considering vortices and KT transition at 2D, BEC is not a necessary condition for superfluidity too.
What’s the order parameter?

Order parameter for condensate

\[\Psi(\vec{r}) = |\psi| \left\langle e^{i\phi(\vec{r})} \right\rangle \neq 0 \]

wave function of mode into which particles condense

Off-diagonal long range order (Penrose & Onsager)

More rigorous definition by eigenfunction of largest eigenvalue of density matrix

\[\rho(\vec{r}, \vec{r}') = \left\langle \psi(\vec{r})\psi^*(\vec{r}') \right\rangle \rightarrow \Psi(\vec{r})\Psi(\vec{r}')^* \]

Related to BEC

Single particle distribution given by the eigenvalues of density matrix

C.N. Yang, Rev. Mod. Phys. 34, 694 (1962)
Physical consequences of phase coherence

Superfluid velocity:

\[\bar{v}_s (\vec{r}) = \frac{\hbar}{m} \nabla \phi \]

Chemical potential:

\[\mu = -\hbar \frac{\partial \phi}{\partial t} \]

Equation of motion:

\[m \frac{\partial \bar{v}_s}{\partial t} + \nabla \mu = 0 \]
Spontaneous symmetry breaking

- Global U(1) symmetry
- Phase mode
 - Gapless Goldstone mode
 - Only one branch of phonons in superfluid phase
Summary

- Superfluidity in Helium
- Landau’s two-fluid model
 - Normal fluid and superfluid components
 - Phonons and rotons
- Bose Einstein condensation and superfluidity
- Off-diagonal long range order
 - Correspond to large eigenvalue of density matrix
 - Relation to BEC
- Spontaneous symmetry breaking