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PACS. 03.65.Ge – Solutions of wave equations: bound states.

Abstract. – We study a one-dimensional Bose system with repulsive δ-function interaction
in the presence of an SU(2) intrinsic degree of freedom on the basis of the coordinate Bethe
ansatz. The ground state and the low-lying excitations are determined by both numerical and
analytical methods. It is shown that the ground state is an isospin-ferromagnetic state, and
the excitations are composed of three elementary particles: holons, antiholons, and isospinons.
The isospinon is a triplet coupled to the “ferromagnetic” background anti-parallelly.

Exactly solvable models [1–16] play an important role in physics, specifically in the inves-
tigation of one-dimensional (1D) interacting many-particle systems. They have served as a
source of inspiration for the understanding of non-perturbative phenomena in correlated elec-
tronic systems; e.g., the spinon was explicitly characterised on the basis of the exact solution
of the Hubbard model [6]. Among these models, an earlier prototypical one is the model of
1D bosons with repulsive δ-function interaction, which was solved [7] by means of the Bethe
ansatz. This method was also applied to solve the problem of spin-(1/2) fermions [8,9] with δ-
function interaction; in fact, Yang [9] already suggested a general strategy for multi-component
systems. Various extensions include the study of electrons on a crystalline lattice [6], the
generalization to higher symmetries [10–12], and applications to different boundary condi-
tions [13–16]. Nevertheless, SU(2) bosons with δ-function interaction, as far as we are aware,
have not been studied until now —in contrast, obviously, to the “spin 1/2” fermionic case,
i.e. a two-component model with anti-symmetric permutation. Recently, however, a two-
component Bose gas was created in magnetically trapped 87Rb by rotating the two hyperfine
states into each other with the help of a slightly detuned Rabi oscillation field [17,18]; and it
was noticed [19] that the ground state of a Bose system can be surprisingly different from the
scalar Bose system, once the particles acquire an intrinsic degree of freedom.

Therefore, in order to obtain non-perturbative insight into the features of one-dimensional
SU(2) bosons with repulsive δ-function interaction, we study a model which is integrable.
Pointing out the connection with the coupled Gross-Pitaevski equation [20, 21], we solve the
Bethe ansatz equations for bosons with an SU(2) intrinsic degree of freedom. The ground-
state properties and the low-lying excitations are studied both by a numerical calculation and
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in the thermodynamic limit. Unlike a spin-(1/2) Fermi system, the ground state of the present
model is a “ferromagnetic” state, consistent with the result of a variational approach [19]. The
charge-isospin phase separation is confirmed, and the isospinon is a triplet instead of a doublet
(the latter being well known for the spinon in the spin-(1/2) Fermi system).

The two-component Bose gas is known to satisfy the coupled Gross-Pitaevski equations:

ih̄
∂

∂t

(
ψ1

ψ2

)
=

(
Ĝ1 P̂ ∗

P̂ Ĝ2

)(
ψ1

ψ2

)
,

where Ĝb = − h̄2

2m∇2
b+Vb(r)+

∑
a uab|ψa|2, P̂ = h̄Ω/2, and a, b = 1, 2; Ω is the Rabi oscillation

field frequency, and V (r) the trapping potential.
We consider the isotropic limit, in which the strengths of interaction between inter-species

and intra-species are the same (uab = c); then the model is integrable. Considering further
the system trapped in a 1D ring of length L, and introducing φ1 = (ψ1 +ψ2)/

√
2, φ2 = (ψ1 −

ψ2)/
√
2, we obtain from the above equation (for real Ω) the following equivalent Hamiltonian:

H =
∫

dx
[
∂xφ

∗
a · ∂xφa + cφ∗aφ

∗
bφbφa − (−1)aΩφ∗aφa

]

with summation over repeated indices implied; natural units are adopted for simplicity. The
fields obey bosonic commutation relations, [φ∗a(x), φb(y)] =

∑
n∈ZZ δabδ(x−y−nL). The Rabi

oscillation field contributes a Zeemann-type term. To avoid confusion with conventional spins,
we denote the generators of the isospin SU(2) by I; correspondingly, [I+, I−] = 2Iz. The
intrinsic degree of freedom can be specified by the eigenvalues of Iz, or by isospin up and down.

The Bethe ansatz equations for two-component bosons are given as follows:

eikjL = −
N∏

l=1

Ξ1(kj − kl)
M∏

ν=1

Ξ−1/2(kj − λν),

1 = −
N∏

l=1

Ξ−1/2(λγ − kl)
M∏

ν=1

Ξ1(λγ − λν), (1)

where Ξβ(x) = (x+ iβc)/(x− iβc). Equation (1) determines the value of the quasi-momenta
{kj} and the isospin rapidities {λν} for a N −2M +1 fold multiplet characterised by the total
isospin Itot = (N − 2M)/2. These equations are similar to the Bethe ansatz equation of [22],
except for a variation in the exponential.

Equation (1) is obtained as follows. Applying the Hamiltonian to the Hilbert space of N
particles, and considering its first quantized version on the domain lR\{lPij}, where lPij := {x |
xi − xj = 0} is the hyperplane defined by the δ-function singularity, we see that only the N -
dimensional Laplacian remains in the Schrödinger operator. Thus N -dimensional plane waves
are solutions. We sum up all the plane waves with wave vectors which are just permutations
of a definite k = (k1, k2, . . . , kN ) according to the Bethe ansatz strategy. Integrating the
Schrödinger equation across the hyperplanes, we obtain S(ki−kj) = [ki−kj−icP]/[ki−kj+ic],
which connects the wave functions defined on the regions separated by the hyperplanes, and
Š := PS (P stands for the spinor representation of the permutation group SN ) relates the
coefficients of different plane waves in the same region. The bosonic permutation symmetry
(instead of the antisymmetry) was imposed when solving for the S-matrix. Analogous to the
case of spin-(1/2) fermions [9], the periodic boundary condition leads to an eigen-equation
for the product of the S-matrices. As the S-matrix satisfies the Yang-Baxter equation, the
quantum inverse scattering method [23] is applicable. After writing out the fundamental



370 EUROPHYSICS LETTERS

commutation relations, and evaluating the eigenvalues of the reference state |ω〉 = | ↑↑ . . . ↑〉,
one immediately recognises the differences to the case of spin-(1/2) fermions. For example,
A(ξ)|ω〉 = ∏

l(ξ − ξl − ic)/(ξ − ξl + ic)|ω〉, and D(ξ)|ω〉 = ∏
l(ξ − ξl)/(ξ − ξl + ic)|ω〉, in the

notion of [23, 24]. Consequently, we obtain eq. (1). We note that the Bethe ansatz strategy
implies the existence of infinitely many constants of motion,

∑
j k

n
j = const, in addition to

the usual energy E =
∑N

l=1 k
2
l +Ω(N − 2M), and momentum P =

∑N
l kl.

Taking the logarithm of eq. (1) leads to

kj =
2π
L
Ij +

1
L

N∑
l=1

Θ1(kj − kl) +
1
L

M∑
ν=1

Θ−1/2(kj − λν),

2πJγ =
N∑

l=1

Θ−1/2(λγ − kl) +
M∑

ν=1

Θ1(λγ − λν), (2)

where Θβ(x) := −2 tan−1(x/βc); both the quantum numbers Ij and Jγ take integer or half-
integer values, depending on whether N − M is odd or even. For comparison, the Bethe
ansatz equation for spin-(1/2) fermions does not only lack the first summation, but also has
an opposite sign in the second summation in the first line of eq. (2). The momentum is easily
obtained from eq. (2), P =

∑
l kl = (

∑
l Il −

∑
ν Jν)2π/L.

It is instructive to analyse eq. (2) in the strong- and weak-coupling regimes. For a strong
interaction, c → ∞, the wave function vanishes for any xi = xj , and hence the bosons avoid
each other like fermions, which is in agreement with the discussion of quantum degeneracy
in trapped 1D gases [25]. On the other hand, in the weak-coupling limit, c → 0, using
Θ1(x) → −π sgn(x), and Θ−1/2(x) → π sgn(x) for x� 1, eq. (2) becomes

kj +
π

L

N∑
l=1

sgn(kj − kl)− π

L

M∑
ν=1

sgn(kj − λν) =
2π
L
Ij ,

N∑
l=1

sgn(λγ − kl)−
M∑

ν=1

sgn(λγ − λν) = 2Jγ . (3)

The subscript of the isospin rapidity λγ can be chosen in such a way that Jγ is arranged in
increasing order; then the second equation of (3) turns into

N∑
l=1

sgn(λγ − kl) = 2Jγ + 2γ −M − 1. (4)

Because |Jγ | < (N−M+1)/2 for a givenM andM ≤ N/2 due to the restriction given by the
Young tableau, the minimum value of the right-hand side of eq. (4) is −N + 2. This requires
that the smallest kl must be smaller than the smallest λν , otherwise the left-hand side would
be −N . Equation (4) also implies

N∑
l=1

[
sgn(λγ+1 − kl)− sgn(λγ − kl)

]
= 2(Jγ+1 − Jγ + 1). (5)

Thus, for Jγ+1 − Jγ = m, there must exist exactly m+ 1 solutions of kl satisfying λγ < kl <
λγ+1. Furthermore, from the first equation of (3), we obtain

kj+1 − kj − π

L

M∑
ν=1

[
sgn(kj+1 − λν)− sgn(kj − λν)

]
=

2π
L

(Ij+1 − Ij − 1). (6)
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Fig. 1 – The density of state per length in k-space for the ground state (left) and for the state in
the presence of one isospin rapidity λ by choosing J1 = 0 (right). The distribution gradually changes
from a “histogram” to a narrow peak for strong to weak coupling, c = 10, 1, 0.1, 0.01. The calculation
is done for L = 40, N = 40. The left panel is similar to fig. 2 of [7].

Obviously, for Ij+1−Ij = n, there will be kj+1−kj = 2nπ/L if there is a λγ such that kj < λγ <
kj+1, otherwise kj+1 − kj = (n− 1)2π/L. Thus an isospin rapidity of value λµ always repels
the quasi-momenta away from that value. As a result, an existing λµ will suppress the density
of states in k-space at the point k = λµ. The more isospin rapidities there are, the higher
the energy will be. Thus, the ground state of SU(2) interacting bosons is no longer a SU(2)
singlet, but an isospin “ferromagnetic” state which differs from the Fermi case considerably.

For N particles, the ground state is characterised by a one-row N -column Young tableau
[N ], of which the quantum numbers are {Ij} := {−(N − 1)/2, . . . , (N − 1)/2} and {Jγ} =
empty. For this state, eq. (2) reduces to the case studied in [7], but the ground state of the
present model is an (N + 1)-fold multiplet with I2 = N(N + 2)/4. The density of states
per length for the ground state is plotted in fig. 1 (left) for various coupling constants. The
“particle”-hole (or maybe to be called holon-antiholon) excitation is defined by the quantum
numbers I1 = −(N−1)/2+δ1,j1 (for 1 ≤ j1 ≤ N), Ij = Ij−1+1+δj,j1 (for j = 2, . . . , N−1), and
|IN | ≥ (N+1)/2. Figure 2 (left) shows the corresponding excitation spectrum. The isospinon-
holon excitation is characterised by the Young tableau [N − 1, 1], i.e., M = 1. In comparison
to those of the ground state, the quantum numbers {Ij} change from half-integer to integer or
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Fig. 2 – The holon-antiholon excitation spectrum (left) and holon-isospinon excitation spectrum
(right), calculated for L = 20, N = 40, and c = 10.
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vice versa; accordingly, I1 = −N/2 + δ1,j1 (for 1 ≤ j1 ≤ N + 1), Ij = Ij−1 + 1+ δj,j1 (for j =
2, . . . , N), while J1 = I1+n so that I1 < J1 < IN . This is an (N−1)-fold multiplet with I2 =
N(N − 2)/4. The excitation spectrum is plotted in fig. 2. In fact two branches of the quasi-
particle excitations were recently observed in a two-component condensate [26] by means of
techniques from nonlinear optics. The density of states for J1 = 0, j1 = 1 is plotted in fig. 1. In
comparison to the ground state where no isospin rapidity exists, a rift emerges at the position of
the isospin rapidity for small c that is consistent with our previous analysis for weak coupling.

In the thermodynamic limit, the Bethe ansatz equations lead to the following integral
equations for the density of roots and the density of holes, respectively, in quasi-momentum
and isospin rapidity spaces:

ρ(k) + ρh(k) =
1
2π

+
∫ Q

Q

dk′ρ(k′)K1(k − k′)−
∫ B

−B

dλ′σ(λ′)K1/2(k − λ′),

σ(λ) + σh(λ) =
∫ Q

−Q

dk′ρ(k′)K1/2(λ− k′)−
∫ B

−B

dλ′σ(λ′)K1(λ− λ′), (7)

where Kµ(x) = π−1µc/(µ2c2 + x2). The limits of integration, Q and B, are determined to
be consistent with

∫ Q

−Q
ρ(k) dk = N/L, and

∫ B

−B
σ(λ) dλ = M/L. It is easy to check by

Fourier transformation that the state with B = ∞ and σh = 0 is an isospin singlet, but
it is not the ground state. The ground state corresponds to σ = ρh = 0 in eq. (7), i.e. it
is an isospin “ferromagnetic” state, in agreement with the result of mean-field theory [19].
The two-particle case is a pedagogical example: For the two-body Schrödinger equation in
the center-of-mass frame, the permutation of particle coordinates equals the parity reflection
of their relative coordinate. The oscillation theorem in quantum mechanics tells that the
spatial wave function without nodes, an even parity solution, yields the lowest energy. If it
possesses an SU(2) intrinsic degree of freedom, the intrinsic wave function must be symmetric
(anti-symmetric) to keep the total wave function with the lowest energy being symmetric (anti-
symmetric). Then the ground state of the Bose system (Fermi system) is of “ferromagnetic”
(“anti-ferromagnetic”) character.

The highly degenerate ferromagnetic ground state, obtained in the case of a vanishing
Zeemann term, will split up into Zeemann sublevels once the external field is applied. The
ground state hence becomes a polarized state once the Rabi field, which breaks the SU(2)
symmetry, is turned on.

In order to evaluate the excitation energies we put ρ(k) = ρ0(k)+ρ1(k)/L (ρ0 refers to the
ground state). In the presence of the isospin degree of freedom, there will be a holon-isospinon
excitation, in addition to the holon-antiholon excitation. The latter is created by a hole inside
the quasi Fermi sea k̄ ∈ [−kF, kF], and an additional kp outside it, i.e.

ρ1(k) + δ(k − k̄) =
∫ kF

−kF

dk′ρ1K1(k − k′) +K1(k − kp).

The excitation energy consists of two terms: ∆E =
∫
k2ρdk+ k2

p = εh(k̄)+ εa(kp), where the
holon energy εh, and the antiholon energy εa(kp) = −εh(kp), are given by

εh(y) = −y2 +
∫ kF

−kF

k2ρh
1 (k, y) dk,

ρh
1 (k, y) + K1(k − y) =

∫ kF

−kF

dk′K1(k − k′)ρh
1 (k

′, y). (8)
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Fig. 3 – Dispersion relations of the isospinon for different coupling constants (left); the curves from
top to bottom correspond to c = 1, 10, 20, 40, and 80, respectively. Right: dispersion of antiholon,
holon, and isospinon, for c = 1 (L = 20, N = 40).

Flipping one isospin corresponds to adding one isospin rapidity to the background of the
ferromagnetic ground state, which inevitably brings about one hole in the k-sector. The
excitation energy ∆E =

∫
k2ρ1dk is obtained from

ρ1(k) + δ(k − k̄) =
∫ kF

−kF

dk′K1(k − k′)ρ1(k′)−K1/2(k − λ);

consequently, ∆E = εh(k̄)+εi(λ). Here εh is given by eq. (8), and εi by εi(λ) =
∫
k2ρi

1(k, λ) dk,
with

ρi
1(k, λ) +K1/2(k − λ) =

∫ kF

−kF

dk′K1(k − k′)ρi
1(k

′, λ).

In conclusion we found three elementary quasi-particles: holon, antiholon and isospinon.
From the asymptotic behaviour of those basic modes, for k̄, kp, and λ tending to kF, we
find that both the holon-antiholon and holon-isospinon excitations are gapless. The related
dispersions for finite N are plotted in fig. 3. Different from the spinons in a Fermi system,
the isospinon here is a triplet which always couples to the “ferromagnetic” background anti-
parallelly. Although it is always accompanied by a charge excitation (holon) for single or odd
number of isospinons, the isospinons can be excited in pairs without exciting the U(1) charge
mode. Because of the coupling between the charge sector and the isospin sector in eq. (7), both
cases bring about changes in the quasi-momentum distribution and hence lead to an excitation
energy. The charge-isospin phase separation predicted by mean-field theory [27] is clearly
confirmed in the present case due to the structure of eq. (7). The holon and antiholon are
quasi-particles created in momentum space, while the isospinon behaves like a dark soliton [28]
in the isospin sector that tends to decrease the total isospin I eigenvalue by one.

Considering the experiment on a two-component Bose gas whose transverse excitations are
frozen out, such that the dynamics becomes essentially one-dimensional [29], it is expected
that the above results can be confirmed through a careful measurement of the excitation
spectra, which in particular should show the isospin excitations. However, the question has to
remain open of how much can be learned from our model —which is an integrable one— about
the phenomenon of Bose-Einstein condensation, as, e.g., the inclusion of a realistic trapping
potential into the model should be important.
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