Superconductivity of heavy fermions: The quest for coupling mechanism

F. Steglich

Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany

In this talk, we shall first address the early discovery of unconventional superconductivity in the heavy-fermion (HF) metal CeCu2Si2 [1].

Subsequently, two fundamentally different antiferromagnetic quantum-critical-point (QCP) scenarios proposed for HF metals [2] will be

briefly discussed.CeCu2Si2 turns out to be the prototype of a conventional quantum critical material.Here, a three-dimensional

spin-density-wave (SDW) QCP exists [3, 4], and almost quantum-critical spin fluctuations are driving the formation of Cooper pairs [5, 6].

Presumably, superconductivity in other HF metals, including CeCoIn5 and UBe13, is of the same type. An unconventional antiferromagnetic

QCP, frequently called a (T = 0) 4f-orbital-selective Mott transition, at which the Kondo effect becomes destroyed, has been identified in a

small number of HF systems, e.g., CeCu6-xAux [7] and YbRh2Si2 [8]. In both compounds, no superconductivity exists at T > 10 mK. However,

HF superconductivity with maximum Tc 2.3 K develops in the vicinity of the pressure-induced Kondo-destroying QCP (pc 2.3 GPa) for

CeRhIn5 [9, 10]. Future research activities will have to unravel the potential differences between HFSC, driven by SDW fluctuations, and

HFSC that forms in the vicinity of an orbital-selective Mott transition. Recent work has been done in collaboration with J. Arndt, S. Friedemann,

C. Geibel, H.S. Jeevan, L. Jiao, S. Kirchner, C. Krellner, Q. Si, O. Stockert, S. Wirth and H.Q. Yuan.

[1] F. Steglich et al., PRL 43, 1892 (1979).

[2] Q. Si and F. Steglich, Science 329, 1161 (2010).

[3] O. Stockert et al., PRL 92, 136401 (2004).

[4] J. Arndt et al., PRL 106, 246401 (2011).

[5] O. Stockert et al., Nature Phys. 7, 119 (2011).

[6] O. Stockert et al., JPSP 81, 011001 (2012).

[7] A. Schröer et al., Nature 407, 351 (2000).

[8] J. Custers et al., Nature 424, 524 (2003).

[9] H. Shishido et al., JPSJ 74, 1103 (2005).

[10] T. Park et al., Nature 440, 65 (2006).

 

 

报告人简介:

Frank Steglich教授,男,19413月出生,1969年在哥廷根大学获物理学博士学位,1978年被聘为德国达姆斯特达工业大学副教授,并于1980年被提升为正教授。1996年,Steglich教授被德国马普学会任命为马普固体化学物理研究所首任所长。他曾在20012007年担任德意志研究联合会(DFG)副主席,中德联合研究中心德方主席。2012年从德国马普所退休,随后受聘为浙江大学求是杰出教授,并任浙江大学关联物质研究中心首任主任。 此外,Steglich教授还是多所世界一流大学或研究所的客座教授或者荣誉教授,并获科隆大学等学校的名誉博士。他的研究兴趣包括磁学,热电学,量子临界性,非常规超导,金属、半导体和绝缘体以及过渡金属、镧系元素和锕系元素的电子关联性等。

  Steglich教授是国际强关联物理研究的重要领导者。他于1979年发现了首个非常规超导体——重费米子超导体,从而推动了整个超导研究朝一个全新的方向发展。最近,Steglich教授又成量子相变研究领域的重要推动者,在该方向上做出了多项原创性的工作。由于他在重费米子超导和量子相变方面的开创性发现,Steglich教授已多次获得诺贝尔物理学奖的提名。他在包括Nature, Science, Nature Physics以及Physical Review Letters等顶尖杂志上发表论文800余篇,被引用次数高达2万余次。另外,他还应邀在国际会议上做大会特邀报告220余次,并获得了多项国际大奖,主要有:德国科学研究会(DFG)的Gottfried-Wilhelm Leibniz Prize1986),Hewlett-Packard 欧洲物理奖(1989),美国物理学会的James C. McGroddy 新材料奖(1990),国际纯粹与应用物理联盟(IUPAP)的磁学奖(2000),德国物理学会的Stern-Gerlach奖章(2004),德意志联邦共和国大十字勋章(Großes Bundesverdienstkreuz)(2005),Bernd T. Matthias超导材料奖(2006)等等。