孤立体系的角动量守恒

除了动量、能量之外，在描述涉及到转动或角向运动的问题时需引入另一个物理量—角动量。对于旋转对称性，可自然引入角动量守恒。

考虑两质点体系：
\[
\begin{align*}
 m_1 \frac{d\vec{v}_1}{dt} &= \vec{F}_{2\rightarrow1} \\
 m_2 \frac{d\vec{v}_2}{dt} &= \vec{F}_{1\rightarrow2}
\end{align*}
\]

\[
\vec{r}_1 \times m_1 \frac{d\vec{v}_1}{dt} = \vec{r}_1 \times \vec{F}_{2\rightarrow1}
\]

\[
= m_1 \frac{d}{dt} (\vec{r}_1 \times \vec{v}_1) - m_1 \frac{d\vec{r}_1}{dt} \times \vec{v}_1 \quad (2\text{nd term } = 0)
\]

\[
= m_1 \frac{d}{dt} (\vec{r}_1 \times \vec{v}_1)
\]

\[
\Rightarrow \quad m_1 \frac{d}{dt} (\vec{r}_1 \times \vec{v}_1) = \vec{r}_1 \times \vec{F}_{2\rightarrow1}
\]

\[
m_2 \frac{d}{dt} (\vec{r}_2 \times \vec{v}_2) = \vec{r}_2 \times \vec{F}_{1\rightarrow2}
\]

\[
\Rightarrow \quad \frac{d}{dt} (\vec{r}_1 \times m_1 \vec{v}_1 + \vec{r}_2 \times m_2 \vec{v}_2) = \vec{r}_1 \times \vec{F}_{2\rightarrow1} + \vec{r}_2 \times \vec{F}_{1\rightarrow2}
\]

\[
= (\vec{r}_1 - \vec{r}_2) \times \vec{F}_{2\rightarrow1}
\]

\[
\Rightarrow \quad \frac{d}{dt} (\vec{r}_1 \times \vec{v}_1) + \vec{r}_2 \times \vec{v}_2) = \frac{d}{dt} \left(\vec{r}_1 \times \vec{p}_1 + \vec{r}_2 \times \vec{p}_2 \right) = 0
\]

Define: \(\vec{L} \equiv \vec{r}_1 \times \vec{p}_1 + \vec{r}_2 \times \vec{p}_2 \) — 角动量（或动量矩）

孤立系有 \(\frac{d\vec{L}}{dt} = 0 \) or \(\vec{L} = \text{const.} \) — 角动量守恒
孤立体系的角动量 (cont’d)

对于单质点，\(\vec{\mathcal{L}} = \vec{r} \times m \vec{v} = \vec{r} \times \vec{p} \)

\[\begin{align*}
\text{多质点系} \\
\vec{L} &= \sum_i \vec{L}_i = \text{const.,} \\
\vec{l}_i &= \vec{r}_i \times \vec{p}_i = \vec{r}_i \times m_i \vec{v}_i
\end{align*} \]

矢量方程

\[
\begin{align*}
L_x &= \text{const.} \\
L_y &= \text{const.} \\
L_z &= \text{const.}
\end{align*} \]

\(\vec{L} \perp \vec{r}, \quad \vec{L} \perp \vec{p} \)

单质点的角动量与其掠面速度成正比

\[d\vec{S} = \frac{1}{2} \vec{r} \times \vec{v} \, dt \]

\[\frac{|d\vec{S}|}{dt} = \frac{1}{2} \, \hbar v = \text{const.} \]

径向速率角动量与参考系原点的选择有关

有心力

\[\frac{d\vec{L}}{dt} = \vec{M} \]

\(\vec{L} \) 和 \(\vec{M} \) 必须是相对于同一点

对于有心力，相对于力心的力矩为

\[\vec{M} = \vec{r} \times \vec{F} = 0 \]

\[\therefore \quad \frac{d\vec{L}}{dt} = 0 \quad \text{即} \quad \vec{L} \text{是不变量} \]

行星绕太阳转即属此例，其角动量守恒

\[\vec{l} = \vec{r} \times m \vec{v} = \vec{r} \times \vec{p} \]

\[\vec{M} = \vec{r} \times \vec{F} \]

\[\left(\vec{v} \times \vec{p} = 0 \right) \]

\[\therefore \quad \vec{M} = \vec{r} \times \vec{F} \]

\[\vec{L} = \vec{r} \times \vec{p} \]

\[\vec{L} = \vec{r} \times \vec{F} \]

与 Newton’s 2nd Law 相似

角动量变化率等于力矩

\[\frac{d\vec{L}}{dt} = \vec{M} \]

积分形式

\[\vec{L} - \vec{L}_0 = \int_{t_0}^{t} \vec{M} \, dt \]

角动量改变量等于外力的冲量矩

\[\vec{M} \, dt = \vec{r} \times \int \vec{F} \, dt \]

例：某人造卫星近地点速度为 \(v_1 = 8 \, \text{km/s} \)，距地面高 \(h_1 = 320 \, \text{km} \)，远地点高 \(h_2 = 1397 \, \text{km} \)，已知 \(R_E = 6378 \, \text{km} \)，求远地点卫星速度。

解：此为有心力情形，卫星绕地球角动量守恒

\[\vec{l} = \vec{r} \times m \vec{v} = \text{const.} \]

近地点和远地点处，\(\vec{r} \perp \vec{v}, \quad \text{therefore} \]

\[\vec{l} = mr_1 v_1 = mr_2 v_2 \]

\[\Rightarrow \quad v_2 = \frac{r_1}{r_2} v_1 = \frac{h_1 + R_E}{h_2 + R_E} v_1 = 6.89 \, \text{km/s} \]
角动量守恒的推论

1. \(\vec{l} \perp \vec{r}, \vec{l} \perp \vec{p}, \vec{l} = \text{const.} \)
 行星轨道是一条平面曲线
 \(\vec{v} \) 不能偏离此平面，否则 \(\vec{l} \) 也要偏离

2. 行星单位时间内扫过的面积 = \(\text{const.} \)，即面积速度不变
 \[
 dS = \frac{1}{2} \vec{r} \times \vec{v} dt, \quad |dS| = \frac{1}{2} hv dt
 \]
 \[
 \frac{|dS|}{dt} = \frac{1}{2} hv = \frac{1}{2} |\vec{r} \times \vec{v}| = \frac{|\vec{l}|}{2m} = \text{const.}
 \]

地球绕太阳公转，北半球冬季比夏季快
\(\Leftarrow \) 地球绕日轨道为椭圆，北半球冬季
地球处于近日点

宇宙在引力下为什么不塌缩？
\(\Leftarrow \) 角动量守恒 \(\Leftarrow \) 万有引力是有心力，距离小时，\(\omega \) 增加
\(\rightarrow \) 引力与离心力平衡

质点系角动量定理

考虑质点系
\[
\frac{d\vec{p}_i}{dt} = \vec{F}_i + \sum_{j \neq i} \vec{f}_{ji}
\]
\[
\vec{l}_i = \vec{r}_i \times \vec{p}_i, \quad \vec{M}_i = \vec{r}_i \times \vec{F}_i, \quad \vec{p}_i = m_i \vec{v}_i \\
\vec{M}_{ji} = \vec{r}_j \times \vec{f}_{ji}, \quad \Leftarrow j^{th} \text{质点对} i^{th} \text{质点的内力矩}
\]
\[
\frac{d\vec{r}_i}{dt} = \frac{d}{dt} (\vec{r}_i \times \vec{p}_i) \\
= \frac{d\vec{r}_i}{dt} \times \vec{p}_i + \vec{r}_i \times \frac{d\vec{p}_i}{dt} = \vec{r}_i \times \frac{d\vec{p}_i}{dt}
\]
\[
\Rightarrow \frac{d\vec{r}_i}{dt} = \vec{r}_i \times \vec{F}_i + \sum_{j \neq i} \vec{r}_j \times \vec{f}_{ji}
\]
\[
\vec{M}_i = \sum_{j \neq i} \vec{M}_{ji}
\]
\[
\vec{M}_{ij} + \vec{M}_{ji} = \vec{r}_j \times \vec{f}_{ji} + \vec{r}_i \times \vec{f}_{ij} = (\vec{r}_i - \vec{r}_j) \times \vec{f}_{ji} = 0
\]

质点系角动量定理 (cont’d)

\[
\Rightarrow \frac{d\vec{L}}{dt} = \sum_i \frac{d\vec{l}_i}{dt} = \sum_i \vec{M}_i + \sum_{i,j \neq i} \vec{M}_{ji}
\]
\[
= \sum_i \vec{M}_i + \frac{1}{2} \sum_{ij} (\vec{M}_{ji} + \vec{M}_{ij}) = \vec{M}
\]
\[
\frac{d\vec{L}}{dt} = \vec{M} \quad \text{— 质点系角动量定理}
\]
\[
\vec{L} = \sum_i \vec{l}_i, \quad \vec{M} = \sum_i \vec{M}_i
\]
\[
\int_0^t \vec{M} dt = \vec{L} - \vec{L}_0 \quad \text{(积分形式)}
\]

— 总角动量变化率等于外力总矩
— 内力矩对体系总角动量变化无贡献

Outline

1. 孤立体系的角动量
 - 孤立体系的角动量
 - 质点系角动量定理

2. 质心系的角动量定理
 - 质心系的角动量定理
 - 体系的角动量与质心的角动量

3. 万有引力
 - 开普勒行星运动三定律
 - 万有引力规律的建立
 - 引力的线性叠加性

4. 关于万有引力的讨论
 - G的测定
 - 几个重要的引力物理量
 - 引力的几何性

5. 有心力问题
 - 有心力问题的基本方程
 - 有效势能与轨道特征
 - 轨道问题

6. 隆格-楞茨矢量
 - 隆格-楞茨矢量

7. 转动惯量和转动动能
 - 转动惯量
 - 转动动能
质点系角动量守恒

\[\dot{M} = 0 \implies \vec{L} = \text{const.} \]

讨论：
1. 孤立系 \(\dot{M} = 0 \)
2. 总 \(\vec{F} \neq 0 \)，\(\dot{M} \)不为0，反之亦然
3. 角动量守恒与动量、能量守恒相互独立，且是矢量式，各分量可分别守恒

\[M_x = 0 \implies L_x = \text{const.} \]

角动量守恒与各项同性

\[A \to A' : \ \Delta V = 0 \ (\text{各项同性}) \]

\[\Delta V = -\vec{f}_{AB} \cdot \Delta \vec{s} = 0 \]

\[\implies (\vec{f}_{AB})_{ij} = 0 \]

\[\implies \vec{f}_{AB} \parallel AB \]

\[\implies \vec{r} \times \vec{f}_{AB} = 0 \]

\[\implies \text{角动量守恒} \]

例：轻杆可绕O点自由转动，无摩擦，\(m_1, m_2 \)初始静止，\(m_3 \)以\(u_0 \)水平撞击\(m_2 \)并和\(m_2 \)粘在一起。

设\(m_1 = m_2 = m_3 = m \)，求碰撞后杆转动的角速度。

解：碰后\(v_1 = v_2 = v_3 = \frac{1}{2}\omega a = v \)。

体系中绕O点不受外力矩，
\[r_1 = r_2 = r_3 = r = a/2 \]

\[m_3r_3u_0 = m_1r_1v_1 + (m_2 + m_3)r_2v_2 \]
\[= mrv + 2mrv = 3mrv \]
\[= 3m\frac{a}{2} \cdot \frac{1}{2}\omega a = \frac{3}{2}m\omega a^2 \]
\[= mru_0 = \frac{1}{2}mau_0 \]

\[\implies \omega = \frac{2}{3} \frac{u_0}{a} \]

Outline

1. 孤立体系的角动量
 - 孤立体系的角动量
 - 质点系角动量守恒
2. 质心系的角动量守恒
 - 质心系的角动量守恒
 - 体系的角动量与质心的角动量
3. 转动惯量和转动动能
 - 转动惯量
 - 转动动能
 - G的测定
 - 几个重要的引力物理量
 - 引力的几何性
5. 有心力问题
 - 有心力问题的基本方程
 - 有效势能与轨道特征
 - 轨道问题
6. 隆格-楞茨矢量
 - 隆格-楞茨矢量
7. 转动惯量和转动动能
质心系的角动量定理

以质心为固定点
\[\vec{L}_{CM} = \text{质心系中体系对质心的角动量} \]
\[\vec{M}_e = \text{外力对质心的力矩} \]
\[\vec{M}_{e惯} = \text{惯性力对质心的力矩} \]

角动量定理:
\[\vec{M}_e + \vec{M}_{e惯} = \frac{d\vec{L}_{CM}}{dt} \]

\[\vec{M}_{e惯} = \sum_i [\vec{r}_{ci} \times (-m_i \vec{a})] \quad \text{(质心系为定系)} \]

\[= - \sum_i (m_i \vec{r}_{ci}) \times \vec{a} \]

\[= 0 \quad \sum_i m_i \vec{r}_{ci} = m_e \vec{r}_{cc} = 0 \]

\[\Rightarrow \quad \vec{M}_e = \frac{d\vec{L}_{CM}}{dt} \]

不论质心系是惯性系还是非惯性系，在质心系中，角动量定理仍适用

体系的角动量与质心的角动量

惯性K系，角动量为\(\vec{L} \); 质心系\(K_c \)中，为\(\vec{L}_{CM} \)

\[\vec{L} = \sum_i (\vec{r}_i \times m_i \vec{v}_i) \]

\[= \sum_i (\vec{r}_c + \vec{r}_{ci}) \times m_i (\vec{v}_c + \vec{v}_{ci}) \]

\[= \sum_i (\vec{r}_c \times m_i \vec{v}_c + \vec{r}_c \times m_i \vec{v}_{ci} + \vec{r}_{ci} \times m_i \vec{v}_c + \vec{r}_{ci} \times m_i \vec{v}_{ci}) \]

\[= \vec{r}_c \times m_e \vec{v}_c + \vec{r}_c \times \sum_i m_i \vec{v}_{ci} + \sum_i m_i \vec{r}_{ci} \times \vec{v}_c + \sum_i m_i \vec{r}_{ci} \times \vec{v}_{ci} \]

\[= 0 \quad \sum_i m_i \vec{r}_{ci} = m_e \vec{r}_{cc} = 0 \]

\[= \vec{r}_c \times m_e \vec{v}_c + \sum_i (\vec{r}_{ci} \times m_i \vec{v}_{ci}) \]

\[\vec{L} = \vec{L}_c + \vec{L}_{CM} \]

\[\vec{L}_c = \vec{r}_c \times m_e \vec{v}_c \quad \rightarrow \text{质心在K系中角动量} \]

\[\vec{L}_{CM} = \sum_i (\vec{r}_{ci} \times m_i \vec{v}_{ci}) \quad \rightarrow \text{体系相对于质心的角动量} \]
所有行星都沿椭圆轨道运行，太阳则位于椭圆的一个焦点上。

1. 轨道定律 (Law of Ellipses)
2. 面积定律 (Law of Equal Areas)
3. 周期定律 (Law of Harmonies)

\[t \sim r^{3/2} \]

Kepler试图从对称性出发去理解，设计了正多面体构成的宇宙。

牛顿从Kepler三定律得到万有引力定律

\[\ln T = \ln r \]

Outline

1. 孤立体系的角动量
2. 质心系的角动量
3. 萬有引力
4. 万有引力定律的建立
5. 引力的几何性
6. 几个重要的引力物理量
7. 万有引力的讨论

(Left) A 1610 portrait of Johannes Kepler by an unknown artist.
(Right) Kepler’s Platonic solid model of the Solar system from Mysterium Cosmographicum (1596)
万有引力规律的建立

Newton → 假设圆轨道（椭圆特例）: \(a = \frac{v^2}{r} \)

Kepler 3rd law: \(T \propto r^{3/2} \)

\[+ \quad v = \frac{2\pi r}{T} \implies v \propto \frac{r}{r^{3/2}} = r^{-1/2} \]

\[\implies a \propto \frac{1}{r^2} \]

\[\implies F = ma \propto \frac{m}{r^2} = \frac{ma}{r^2}, \quad \alpha \text{ depends on the Sun} \]

由此Newton 从 Kepler 3rd law 得出了 \(F \propto \frac{1}{r^2} \)，与 \(r^2 \) 成反比。

Newton 认为引力是万有、普适和统一的，即所有物体之间都存在这种引力，称为万有引力 — “Universal Gravitation”

如何检验引力的普适性规律？

考虑月球绕地球运动: \(F_{\text{地→月}} = m_{\text{月}} \frac{\alpha'}{l^2} \)

\[\implies a_{\text{月}} = \frac{\alpha'}{l^2} \quad (\alpha' \text{与地球有关, } l = \text{地月距离}) \]

地球对地球上落体的引力: \(F = m \frac{\alpha'}{R_E^2} = mg \implies g = \frac{\alpha'}{R_E^2} \)

\[\implies l = R_E \sqrt{\frac{g}{a_{\text{月}}}} \]

\[\therefore a_{\text{月}} = \frac{v^2}{l}, \quad v = \frac{2\pi l}{T}, \quad v \rightarrow \text{月球速度, } T \text{是周期} \]

\[\therefore l^3 = \frac{1}{4\pi^2} R_E^2 g T^2 \]

所有量已知, \(R_E \approx 6400 \text{ km, } g = 9.8 \text{ m/s}^2, \ T = 27 \text{天8小时, } \]

\(l = 3.84 \times 10^8 \text{ km, 即可验证上式} \)

牛顿1665年得到上式，但推迟发表，因为当时的测量数据不符合

引力常数 \(G \)

地月系统

\[F_{\text{地→月}} = m_{\text{月}} \frac{\alpha'}{l^2} \]

\[F_{\text{月→地}} = m_{\text{地}} \frac{\alpha''}{l^2} \]

Newton's 3rd law: \(F_{\text{地→月}} = F_{\text{月→地}} \)（方向相反）

\[\implies \frac{\alpha'}{\alpha''} = \frac{m_{\text{地}}}{m_{\text{月}}} \quad \implies \alpha' = Gm_{\text{地}}, \quad \alpha'' = Gm_{\text{月}} \]

\[\implies F = G \frac{m_{\text{地}} m_{\text{月}}}{l^2} \]

\[\downarrow \text{对任意两物体} \]

\[F = G \frac{m_1 m_2}{r^2} \quad G \text{ — Gravitational constant} \]

量纲:

\[[G] = \left[\frac{[F]}{[m^2]} \right] = \left[\frac{\text{kg} \cdot \text{m/s}^2 \cdot \text{m}^2}{\text{kg}^2} \right] = \left[\text{m}^3/\text{s}^2/\text{kg} \right] = M^{-1}L^3T^{-2} \]
引力可线性叠加

引力如其他力一样可线性叠加，如m受多个物体的引力时:

$$ F = \sum_i F_i = \sum_i \frac{G m m_i}{r_i^2} \left(\frac{r_i}{r_1} \right) $$

考虑连续分布

均匀分布的球壳，厚度$t \ll r$，$R \gg r$
利用对称性，圆环带的合力无垂直分量，环带长 $2\pi r \sin \theta$，宽 $rd\theta$, 厚 t
总质量 $dM = \rho dV = \rho \cdot 2\pi r \sin \theta \cdot rd\theta \cdot t = 2\pi r \rho t r^2 \sin \theta d\theta$

$$ dF = \frac{GmdM}{x^2} \cos \alpha = 2\pi Gt \rho mr^2 \sin \theta d\theta \cos \alpha $$

若m位于球壳内，即$r - R \leq x \leq R + r$，则积分上下限变为$r \pm R$，有

$$ \int_{r-R}^{R+r} \left(\frac{R^2 - r^2}{x^2} + 1 \right) dx = 0 $$

$$ F = 0 $$

均匀密度的球壳对其内部的净引力为零

由引力的r^{-2}关系决定

结果说明宇宙在大尺度上物质分布是相当均匀的，太阳系外的引力可不考虑

地球为标准的球体 \implies 可利用人造卫星轨道对Kepler定律的偏移来研究地球的形状及质量分布
G的测定

1798年，Henry Cavendish
扭秤在A、B的引力下转动，悬线扭转常数
已知，测 θ → G

$$G = 6.754 \times 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s}^2)$$

1969年，Rose →

$$G = 6.674 \times 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s}^2)$$

由G，可“称”得

$$M_E = \frac{gR_E^2}{G}$$

1986国际值 → $G = 6.67259(85) \times 10^{-11} \text{m}^3/(\text{kg} \cdot \text{s}^2)$

$$m_E \approx 5.97 \times 10^{24} \text{kg}, \quad \rho = \frac{3m_E}{4\pi R_E^3} = 5.52 \text{g/cm}^3$$

几个重要的引力物理量

第一宇宙速度 — 环绕速度

$$m \frac{v_1^2}{R_E} = G \frac{M_Em}{R_E^2} = mg \implies v_1 = \sqrt{\frac{GM_E}{R_E}} = \sqrt{gR_E} = 7.9 \text{km/s}$$

第二宇宙速度 — 逃逸速度

$$\frac{1}{2}mv_2^2 - G \frac{M_Em}{R_E} = 0 \implies v_2 = \sqrt{\frac{2GM_E}{R_E}} = 11.2 \text{km/s}$$

如果 $v_2 = c$，则有质量物体无法逃逸

$$c = \sqrt{\frac{2GM}{r}} \quad \text{or} \quad r = \frac{2GM}{c^2}$$
If $r < r_g = \frac{2GM}{c^2}$, then light cannot escape → black hole

$$r_g = \frac{2GM}{c^2}$$ for the gravitational radius or Schwarzschild radius

— 1796年拉普拉斯曾有此猜想

光子有固定质量，也受引力作用

对于地球，$r_g \approx 0.9 \text{ cm}$. 如果$R_E$缩小到1 cm内，将无法与外界进行联系

Consider $M = \frac{4\pi}{3}r^3 \rho$

$$\Rightarrow r_g = \frac{8\pi G r^3 \rho}{3c^2} \Rightarrow r_g = \left(\frac{3c^2}{8\pi G \rho} \right)^{1/2}$$

$$\Rightarrow \text{生活在密度为} \rho \text{的环境一人，不能把光发射到} r_g \text{以外}$$

宇宙 $\rho \approx 10^{-29} \text{ g/cm}^3 \Rightarrow \text{宇宙半径} \ r_g \approx 10^{28} \text{ cm}$

引力的几何性

$\frac{m_{\text{惯}}}{m_{\text{月}}} = \text{const.} = \text{普适}$

地一月系统在太阳系中，可忽略太阳的存在，尽管月球受到地球和太阳的引力差不多大

假如没有地月作用，则地月一起绕日运动，地月相对位置不变

$$\left(\frac{m_{\text{月}}}{r} \right)_{\text{惯}} = \frac{G (m_{\text{月}})_{\text{年}} M_{\text{日}}}{r^2}$$

$$\left(\frac{m_{\text{地}}}{r} \right)_{\text{惯}} = \frac{G (m_{\text{地}})_{\text{年}} M_{\text{日}}}{r^2} \Rightarrow \left(\frac{m_{\text{月}}}{m_{\text{年}}} \right)_{\text{惯}} = \left(\frac{m_{\text{地}}}{m_{\text{年}}} \right)_{\text{惯}}$$

$$v_{\text{月}} = v_{\text{地}}$$

推广到所有物体，有

$$\frac{m_{\text{惯}}}{m_{\text{年}}} = \left(\frac{m_{\text{地}}}{m_{\text{年}}} \right)_{\text{惯}} = \text{universal const.} \Rightarrow \text{选为} 1$$

由此：

$$G \frac{M m}{r^2} \dot{r} = m \ddot{a} \Rightarrow \ddot{a} = \frac{GM}{r^2} \dot{r}$$

引力场中质点的运动与质量无关

引力场中运动的动力学问题变成与物质性质无关，纯时空中的几何问题

零质量物体也会受到引力作用，光在引力场中路径会弯曲

引力的几何性 ← 广义相对论

是其他如电磁场没有
重力场中物体运动，竖直运动
\[x = x_0 + v_0 t - \frac{1}{2} g t^2 \]
如果物体在时经过点1，时经过点2，则点0，点由 (t1, x1), (t2, x2)唯一确定。在 \(x - t \) 时空中连接此两点的几何路径唯一，
对引力，给定初、末态时空点，则在时 - 时空图上物体的路径唯一，此路径决定了物体的运动 — 几何性

引力场与物质相互作用
物质的分布改变引力场的分布、改变时空结构。
等效原理把引力和惯性力等效起来，可以认为物体在引力场中的运动是在由于引力的存在而弯曲了的时空中的自由惯性运动。
这样的自由运动的轨迹，描绘出该弯曲时空里的“直线”，即“短程线”

阅读课本§5.5.4 — caution，不一定完全正确

有心力问题

\[\vec{F} = f (\vec{r}) \dot{\vec{r}} \quad \text{有心力} \]
\[\vec{F} = f (r) \dot{\vec{r}} \quad \text{中心对称有心力} \]

\[m \ddot{\vec{r}} = f (r) \dot{\vec{r}} \]

(1) 运动轨迹在一个平面上（角动量守恒）
(2) 机械能守恒（保守力）

选平面极坐标系：
\[
\begin{align*}
 m (\ddot{r} - r \ddot{\theta}) &= f (r) \\
 m (2 \ddot{\theta} + r \ddot{\theta}) &= 0 \quad \implies \quad \frac{1}{r} \frac{d}{dt} (m r^2 \dot{\theta}) = 0 \\
 m r^2 \ddot{\theta} &= l = \text{const.} \\
 \dot{r} &= r \dot{\theta} \\
 \ddot{r} &= \dot{r} \ddot{\theta} + r \dot{\theta} \dot{\theta} \\
 \dot{l} &= \dot{r} \times m \ddot{r} = \dot{r} \times m (\dot{r} \ddot{\theta} + r \dot{\theta} \dot{\theta}) = m r^2 \dot{\theta} (\dot{r} \times \dot{\theta})
\end{align*}
\]

有心力问题基本方程
令 \(l = m h, \quad h = \text{掠面速度}2\times\)
\[\implies \quad \dot{\theta} = \frac{h}{r^2} \]

\[m \left(\dot{r} \ddot{r} - \frac{h^2}{r^3} \dot{r} \right) = f (r) \dot{r} \]

\[\int_{r_0}^{r} \dot{r} \ddot{r} = \frac{1}{2} m \dot{r}^2 + \frac{m h^2}{2r^2} + V (r) = \frac{1}{2} m \dot{\theta}^2 + \frac{m h^2}{2r^2} + V (r_0) = E \]

\[V (r) = V (r_0) - \int_{r_0}^{r} f (r) \dot{r} \]

\[\implies \quad \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \dot{\theta}^2 + V (r) = E \quad — \text{机械能守恒} \]

\[\frac{1}{2} m v_r^2 + \frac{1}{2} m v_\theta^2 + V (r) = E \]
有心力—有效势能

$$
\frac{1}{2} m v^2 + \frac{m h^2}{2r^2} + V(r) = E = \frac{1}{2} m v^2 + V_{\text{eff}}(r)
$$

$$
V_{\text{eff}}(r) = \frac{m h^2}{2r^2} + V(r)
$$

径向统一运动

引力场:
$$
V(r) = -G \frac{M m}{r}
$$

$$
V_{\text{eff}}(r) = \frac{m h^2}{2r^2} - G \frac{M m}{r}
$$

\(V_{\text{eff}} > 0 \) 对小的 \(r \)

\(V_{\text{eff}} < 0 \) 对大的 \(r \)

在拱点处，\(\dot{r} = v_r = 0 \)，质点只有角向运动

$$
r^2 - G \frac{M m}{E} r + \frac{m h^2}{2E} = 0
$$

轨道特征 (cont’d)

(3) \(E = E_3 < 0 \)，且 \(E_3 > E_4 \), \(r_{3\text{min}} < r_{3\text{max}} \)

$$
\Rightarrow r_3 = -G \frac{M m}{2E} \pm \sqrt{\left(\frac{GMm}{2E} \right)^2 + \frac{m h^2}{2E}} \quad (E < 0)
$$

椭圆，中心位于其一个焦点上

半长轴为

$$
a = \frac{1}{2} \left(r_{3\text{min}} + r_{3\text{max}} \right) = -G \frac{M m}{2E}
$$

能量只与半长轴有关，如果 \(|E| \) 小，则 \(a \) 大

(4) \(E = E_4 \), \(r = r_4 \)，圆轨道

$$
\left(\frac{GMm}{2E} \right)^2 + \frac{m h^2}{2E} = 0 \quad \Rightarrow E = -G \frac{2M^2 m}{2h^2}
$$

$$
\Rightarrow r_4 = \frac{h^2}{GM} \quad \rightarrow \text{圆轨道}
$$

轨道特征

一维情形 \(E \geq 0 \) 时，轨道半开放

(1) \(E = E_1 > 0 \), \(r_{\text{min}} = r_1 \leq r < \infty \)

设初始 \(r \to \infty \) 处，\(\theta = \theta_0 \)，轨迹为 \(C_1 \)

\(\theta = \pi \) 时，\(r = r_1 \) 最近

$$
r_1 = -G \frac{M m}{2E} \sqrt{\left(\frac{GMm}{2E} \right)^2 + \frac{m h^2}{2E}}
$$

\(C_1 \) 为抛物线

(2) \(E = E_2 = 0 \)

\(r_{\text{min}} = r_2 \leq r < \infty \)，轨迹 \(C_2 \) 为抛物线

$$
\Rightarrow V_{\text{eff}}(r_2) = 0 \quad \Rightarrow r_2 = \frac{h^2}{2GM}
$$

关于万有引力的讨论

3 质点的角动量

4 立体的角动量

5 万有引力

6 质点的角动量定理

7 引力的线性叠加性

定义

令：

- 万有引力
 - 开普勒行星运动定律
 - 轨道方程
- 轨道
 - 轨道方程

\[
\begin{align*}
 d\theta &= \frac{h}{r^2} \\
 \frac{d^2 r}{d\theta^2} &= \frac{h u^2}{r^2} + \frac{m}{2} \frac{h^2}{r^2} \\
 \therefore \quad h^2 u^2 \left(\frac{d^2 u}{d\theta^2} + u \right) &= -\frac{f}{m}
\end{align*}
\]

由 \(f(r) \) 可求出轨道方程；反之，由轨道方程 \(f(r) \)
1. 所以，Newton’s law + 万有引力 \(\implies \) Kepler’s 1st law，
且Kepler’s 1st law 描述的为 \(0 < \epsilon < 1 \) 的 特例

2. 万有引力为有心力 \(\implies \) 角动量守恒 \(\implies \) Kepler’s 2nd law

3. 对 \(0 < \epsilon < 1 \)，

\[
T = \frac{2\pi r_0^2}{h/2} = \frac{2\pi r_0^2}{h (1 - \epsilon^2)^{3/2}}
\]

\[\implies \frac{T^2}{a^3} = \frac{4\pi^2 r_0^4}{\left(h^2 (1 - \epsilon^2)^3\right)} \leq \frac{4\pi^2 r_0}{h^2} = \frac{4\pi^2}{GM} = \text{const.}
\]
与行星无关 \(\implies \) Kepler’s 3rd law

例5.3 行星轨道

如果 \(m \ll M \) 不满足，检视 Kepler’s 3rd law

解： \(m \ll M \) 情形：

\[
G \frac{Mm}{R^2} = m \frac{v^2}{R}, \quad T = \frac{2\pi R}{v} \quad \text{（圆运动）}
\]

\[\implies T^2 = \frac{4\pi^2 R^2}{GM} = \frac{4\pi^2}{GM} R^3 = k R^3 \]

\[k = \frac{4\pi^2}{GM} \quad \text{与行星无关} \]

如果 \(m \ll M \) 不成立：

\[G \frac{Mm}{R^2} = \frac{v^2}{R}, \quad \frac{1}{\mu} = \frac{M + m}{Mm} \]

\[\implies T^2 = \frac{4\pi^2 R^2}{GMMm/\mu R} = \frac{4\pi^2}{G(m + M)} R^3 = k' R^3 \]

\[k' = \frac{4\pi^2}{G(m + M)} \quad \text{与各行星质量有关} \]

\[\implies \text{ Kepler’s 3rd law } \text{是近似的} \]

例5.4 地球向火星发射人造天体的发射速度

解： 半长轴 \(a = \frac{1}{2} (r_d + r_m) \)

\[E = -\frac{GMm}{2a} = -\frac{GMm}{r_d + r_m} \]

为飞船摆脱地球引力后在太阳系中的能量

\[E_k = \frac{1}{2} mv^2 = E - V \]

\[= -\frac{GMm}{r_d + r_m} + \frac{GMm}{r_d} \]

\[\implies v = \sqrt{2GM \left(\frac{1}{r_d} - \frac{1}{r_d + r_m} \right)} \]

\[= \sqrt{\frac{2GM}{r_d} \frac{r_m}{r_d + r_m}} \]

地球参考系中，飞船速度

\[u = v - v_d = \sqrt{\frac{2GM}{r_d} \frac{r_m}{r_d} - r_m} - v_d \]

\[v_d = \sqrt{\frac{GM}{r_d}} = 29.8 \text{ km/s} \]

\[\frac{1}{2} mu^2 = \frac{1}{2} mv_d^2 - \frac{GMm}{R_E} \]

\[v^2 = u^2 + \frac{2GM}{R_E} = u^2 + v_d^2 \]

\[v_2 = 11.2 \text{ km/s} \]

\[r_m = 2.28 \times 10^8 \text{ km} = 1.524 r_d \]

\[\implies v = 29.8 \sqrt{2 \times \frac{1.524}{2.524}} = 32.7 \text{ km/s} \]

\[u = v - v_d = 32.7 - 29.8 = 2.9 \text{ km/s} \]

\[v' = \sqrt{2.9^2 + 11.2^2} = 11.6 \text{ km/s} \]
隆格-楞茨矢量

$$\vec{F} = -\frac{G M m \vec{r}}{r^2} \hat{r}$$

万有引力、太阳系 $m \ll M$

$$T + V = E = \text{const.}$$

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m \frac{d\vec{r}}{dt} = \text{const.}$$

Define

$$\vec{B} = \frac{d\vec{r}}{dt} \times \vec{L} - G M m \frac{\vec{r}}{r}$$

— Laplace-Runge-Lenz vector

$$\frac{d}{dt} \left(\frac{d\vec{r}}{dt} \times \vec{L} \right) = \frac{d^2\vec{r}}{dt^2} \times \vec{L} + \frac{d\vec{r}}{dt} \times \frac{d\vec{L}}{dt}$$

$$= \frac{d^2\vec{r}}{dt^2} \times \vec{L} = -\frac{G M \vec{r}}{r^2} \times \vec{L}$$

隆格-楞茨矢量

$$\Rightarrow$$

Kepler第一定律

$$\frac{1}{m} \vec{L}^2 = \frac{1}{m} \vec{L} \cdot \vec{L} = \left(\vec{r} \times \frac{d\vec{r}}{dt} \right) \cdot \vec{L}$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$\frac{1}{m} \vec{L}^2 = \vec{r} \cdot \left(\frac{d\vec{r}}{dt} \times \vec{L} \right)$$

$$= \vec{r} \cdot \left(\vec{B} + G M m \frac{\vec{r}}{r} \right)$$

$$\vec{r} \cdot \vec{B} = r B \cos \varphi$$

$$\therefore \quad \frac{1}{m} \vec{L}^2 = r B \cos \varphi + G M m r$$

$$\Rightarrow r = \frac{\vec{L}^2 / G M m^2}{1 + B \cos \varphi / G M m} = \frac{A}{1 + \epsilon \cos \varphi}$$

$$A = \frac{\vec{L}^2}{G M m^2}, \quad \epsilon = \frac{B}{G M m}$$

$$\Rightarrow$$

在太阳引力作用下，行星轨迹必定是椭圆曲线，太阳在焦点位置
偏心率 $\epsilon = B/GMm$

$$B^2 = \vec{B} \cdot \vec{B} = \left(\frac{d\vec{r}}{dt} \times \vec{L} - GMm\frac{\vec{r}}{r} \right)^2$$

$$= \left(\frac{d\vec{r}}{dt} \times \vec{L} \right)^2 - 2GMm\frac{\vec{r}}{r} \cdot \left(\frac{d\vec{r}}{dt} \times \vec{L} \right) + (GMm)^2$$

$$= \left[\left(\frac{d\vec{r}}{dt} \times \vec{L} \right) \times \frac{d\vec{r}}{dt} \right] \cdot \vec{L} - 2GMm^2\frac{\vec{r}}{r} \cdot \left(\frac{d\vec{r}}{dt} \times \vec{L} \right) + (GMm)^2$$

$$= \left[\left(\frac{d\vec{r}}{dt} \right)^2 \vec{L} - \left(\frac{d\vec{r}}{dt} \times \vec{L} \right) \frac{d\vec{r}}{dt} \right] \cdot \vec{L} - 2GMm^2\frac{\vec{r}}{r} \cdot \left(\frac{d\vec{r}}{dt} \times \vec{L} \right) + (GMm)^2$$

$$= \frac{2}{m} \left[\frac{m}{2} \left(\frac{d\vec{r}}{dt} \right)^2 - \frac{GMm}{r} \right] \vec{L}^2 + (GMm)^2$$

$$= \frac{2}{m} EL^2 + G^2M^2m^2$$

$$\epsilon = \frac{B}{GMm} = \sqrt{1 + \frac{2EL^2}{G^2M^2m^3}}$$

隆格-楞茨矢量 \vec{B} 的物理意义

1. 方向指向近日点
2. 其大小决定偏心率 ϵ

圆轨道：

$$\epsilon = 0 = 1 + \frac{2EL^2}{G^2M^2m^3}$$

行星机械能与角动量之间有确定关系

$$\begin{align*}
L &= mrv \\
\frac{GM}{r} &= E = \frac{1}{2}mv^2 - \frac{GM}{r}
\end{align*}$$

解：（1）

$$\frac{GMm}{R_0} = \frac{mv_0^2}{R_0} \implies GMm = mv_0^2R_0 = C$$

$$F = \frac{mv_0^2R_0}{r^2}$$

（2）

径向速度 $v_r(< v_0)$。

1. 用 R_0, v_0 表示出引力 F
2. 用 R_0, v_0, v_r 表示新轨道方程，并画出 $v_r = \frac{v_0}{2}$ 时的轨道
3. 求新半长轴 a, 并证明新旧轨道 Ea 不变

当 $\epsilon' = \begin{cases} \frac{1 + \frac{2E'l^2}{G^2M^2m^3}}{1 + \frac{2E'l^2}{mC_2}} \end{cases}$

$$= \left[1 + \frac{2E'C^2/v_0^2}{mC^2} \right]^{1/2} = \left[1 + \frac{1}{2}mv_0^2 + \frac{1}{2}mv_r^2 \right]^{1/2} = \frac{v_r}{v_0}$$

$A' = \frac{l^2}{GMm^2} = \frac{l^2}{Cm} = \frac{l}{mv_0} = R_0$

\implies 新轨道方程

$$r = \frac{R_0}{1 + \epsilon' \cos \varphi} = \frac{R_0}{1 + \frac{v_r}{v_0} \cos \varphi}$$

when $v_r = \frac{1}{2}v_0 \implies \epsilon' = 1/2$

$$r = \frac{R_0}{1 + \frac{1}{2} \cos \varphi}$$
(3) \[2a = r(\varphi = 0) + r(\varphi = \pi) = \frac{2R_0}{1 - \epsilon^2} \]
\[= \frac{2}{3}R_0 + 2R_0 = \frac{8}{3}R_0 \]
\[a = \frac{4}{3}R_0 \]

\[E'a = \left(-\frac{1}{2}mv_0^2 + \frac{1}{2}mv_r^2 \right) \frac{R_0}{1 - \left(\frac{v_r}{v_0} \right)^2} \]
\[= -\frac{1}{2}mv_0^2R_0 \]

与老轨道相同（与\(v_r \)无关）

\[\Rightarrow \quad E' = \frac{-C}{4R_0} = -\frac{1}{4}mv_0^2 = \frac{1}{2}mv_A^2 - \frac{C}{R_0} \]
\[= \frac{1}{2}mv_A^2 - mv_0^2 \]

\[\Rightarrow \quad v_A = \sqrt{\frac{3}{2}v_0} \]

(2) \[\frac{dS'}{dt} = \frac{l}{2m} \]
单位时间内扫过的面积

\[\frac{T_2}{T_1} = \frac{S_2' l_1}{S_1' l_2}, \quad T_1 = \frac{2\pi R_0}{v_0}, \quad S_1 = \pi R_0^2, \quad S_2' = \pi ab \]
\[S_2' = \pi \cdot 2R_0 \cdot \frac{\frac{3}{2}R_0}{\sqrt{1 - \left(\frac{1}{2} \right)^2}} = 2\pi \sqrt{3}R_0^2 \]

\[\Rightarrow \quad T_2 = T_1 \frac{S_2' l_1}{S_1' l_2} = \frac{2\pi R_0}{v_0} \frac{2\pi \sqrt{3}R_0^2}{\pi R_0^2} \frac{v_0}{\sqrt{\frac{3}{2}}v_0} = \frac{4\sqrt{2}\pi R_0}{v_0} \]

例：飞船作半径\(R_0 \)圆轨道，速度\(v_0 \)。
在A点过速度，以期到达B点(\(r_B = 3R_0 \))

(1) 写椭圆轨道方程，\(v_A = ? \)
(2) \(T = ? \) 周期
(3) C点处\(v_\perp \)及\(v_r \)

解：
(1) 椭圆轨道

\[GMm = mv_0^2R_0 = C \]
\[r_{\min} = \frac{A}{1 + \epsilon} = R_0, \quad r_{\max} = \frac{A}{1 - \epsilon} = 3R_0 \]
\[\Rightarrow \quad \epsilon = \frac{1}{2}, \quad A = \frac{3}{2}R_0 \]
\[\Rightarrow \quad r = \frac{\frac{3}{2}R_0}{1 + \frac{1}{2} \cos \varphi} \]
\[2a = \frac{2 \times \frac{3}{2}R_0}{1 - \epsilon^2} = 4R_0 = -\frac{GMm}{E'} = -\frac{C}{E'} \]

(3) \[l' = l_2 = mv_A R_0 = \sqrt{\frac{3}{2}}mv_0R_0 = \sqrt{\frac{3}{2}}l_1 \]
在C点，\(\theta = \frac{\pi}{2}, \quad r_c = \frac{3}{2}R_0 \)

\[l' = \sqrt{\frac{3}{2}}mv_0R_0 = mv_\perp r_c = mv_\perp \frac{3}{2}R_0 \]
\[E' = \frac{1}{4}mv_0^2 = \frac{1}{2}mv_r^2 + \frac{1}{2}mv_\perp^2 - \frac{C}{\frac{3}{2}R_0} \]
\[\Rightarrow \quad \begin{cases} v_\perp = \sqrt{\frac{2}{3}}v_0 \\ v_r = \sqrt{\frac{1}{6}}v_0 \end{cases} \]
转动惯量 (cont’d)

多质点体系，绕O作圆周运动

\[
 m_i r_i^2 \frac{d\omega_i}{dt} = M_i + \sum_{j \neq i} M_{ji}
\]

\[
 \sum_i m_i r_i^2 \frac{d\omega_i}{dt} = \sum_i M_i + \sum_{j \neq i} \sum M_{ji}
\]

\[
 = \sum_i M_\theta = M_\theta
\]

如果 \(\omega_i = \omega \) \(\Rightarrow \) 刚性转动体系

对刚性转动 \(\Rightarrow \) \[
 \left(\sum_i m_i r_i^2 \right) \frac{d\omega}{dt} = M_\theta
\]

\(I \equiv \sum_i m_i r_i^2 \) \(\rightarrow \) 转动惯量

\(I \frac{d\omega}{dt} = M \) （外力矩）

转动惯量与转轴的位置有关

地球自转的转动惯量

\[
 I = \int (r \sin \theta)^2 \, dm
\]

\[
 = \int_0^R \int_0^\pi \int_0^{2\pi} \rho r^4 \sin^3 \theta dr d\theta d\varphi
\]

\[
 = \frac{8\pi}{15} \rho R^5 = \frac{2}{5} M_E R^2
\]

\[
 \approx 8 \times 10^{37} \text{ kg} \cdot \text{m}^2
\]
转动动能（定轴转动）

质点绕固定轴的平面转动
\[\frac{dl}{dt} = M \]

\[\omega = \frac{v}{r}, \quad l = l_\omega, \quad I = mr^2 \]

\[\implies \frac{d}{dt} (l_\omega) = M \]

如果 \(M = 0 \)，则 \(l_\omega = \text{const.} \)

\[
\omega \frac{d}{dt} (l_\omega) = M_\omega \quad \implies \quad \frac{d}{dt} \left(\frac{1}{2} I_\omega^2 \right) = M \frac{d\varphi}{dt}
\]

\[\implies \left(\frac{1}{2} I_\omega^2 \right)_2 - \left(\frac{1}{2} I_\omega^2 \right)_1 = \int_1^2 M d\varphi \]

比较
\[\left(\frac{1}{2} m^2 \right)_2 - \left(\frac{1}{2} m^2 \right)_1 = \int_1^2 F dx \]

\(\frac{1}{2} I_\omega^2 \) 与 \(\frac{1}{2} m^2 \) 对应，为转动动能